Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 44 of 55 pages
Question 431. The cube root of .000216 is:
  1.    .6
  2.    .06
  3.    77
  4.    87
 Discuss Question
Answer: Option B. -> .06
$$\eqalign{
& {\left( {.000216} \right)^{\frac{1}{3}}} = {\left( {\frac{{216}}{{{{10}^6}}}} \right)^{\frac{1}{3}}} \cr
& = {\left( {\frac{{6 \times 6 \times 6}}{{{{10}^2} \times {{10}^2} \times {{10}^2}}}} \right)^{\frac{1}{3}}} \cr
& = \frac{6}{{{{10}^2}}} \cr
& = \frac{6}{{100}} \cr
& = 0.06 \cr} $$
Question 432. What should come in place of both x in the equation $$\frac{x}{{\sqrt {128} }} = \frac{{\sqrt {162} }}{x}$$
  1.    12
  2.    14
  3.    144
  4.    196
 Discuss Question
Answer: Option A. -> 12
$$\eqalign{
& {\text{Let}}\,\frac{x}{{\sqrt {128} }} = \frac{{\sqrt {162} }}{x} \cr
& {\text{Then}}\,{x^2} = \sqrt {128 \times 162} \cr
& = \sqrt {64 \times 2 \times 18 \times 9} \cr
& = \sqrt {{8^2} \times {6^2} \times {3^2}} \cr
& = 8 \times 6 \times 3 \cr
& = 144 \cr
& \therefore x = \sqrt {144} = 12 \cr} $$
Question 433. $$\sqrt {1.5625} = ?$$
  1.    1.05
  2.    1.25
  3.    1.45
  4.    1.55
 Discuss Question
Answer: Option B. -> 1.25
$$\eqalign{
& \,\,\,\,\,\,1|\overline 1 .\overline {56} \overline {25} \,(\,1.25 \cr
& \,\,\,\,\,\,\,\,\,|1 \cr
& \,\,\,\,\,\,\,\,\,| - - - - - \cr
& \,\,\,22|\,\,\,\,56 \cr
& \,\,\,\,\,\,\,\,\,|\,\,\,\,44 \cr
& \,\,\,\,\,\,\,\,\,| - - - - - \cr
& 245|\,\,\,1225 \cr
& \,\,\,\,\,\,\,\,\,|\,\,\,1225 \cr
& \,\,\,\,\,\,\,\,\,| - - - - - \cr
& \,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,\,x \cr
& \,\,\,\,\,\,\,\,\,| - - - - - \cr
& \therefore \sqrt {1.5625} = 1.25 \cr} $$
Question 434. If $$3\sqrt 5 + \sqrt {125} $$   = 17.88, then what will be the value of $$\sqrt {80} + 6\sqrt 5 \,\,?$$
  1.    13.41
  2.    20.46
  3.    21.66
  4.    22.35
 Discuss Question
Answer: Option D. -> 22.35
$$\eqalign{
& 3\sqrt 5 + \sqrt {125} = 17.88 \cr
& \Rightarrow 3\sqrt 5 + \sqrt {25 \times 5} = 17.88 \cr
& \Rightarrow 3\sqrt 5 + 5\sqrt 5 = 17.88 \cr
& \Rightarrow 8\sqrt 5 = 17.88 \cr
& \Rightarrow \sqrt 5 = 2.235 \cr
& \therefore \sqrt {80} + 6\sqrt 5 = \sqrt {16 \times 5} + 6\sqrt 5 \cr
& = 4\sqrt 5 + 6\sqrt 5 \cr
& = 10\sqrt 5 = \left( {10 \times 2.235} \right) = 22.35 \cr} $$
Question 435. If $$3a = 4b = 6c$$   and $$a + b + c = 27\sqrt {29} {\text{,}}$$    then $$\sqrt {{a^2} + {b^2} + {c^2}} $$    is ?
  1.    $$3\sqrt {29} $$
  2.    81
  3.    87
  4.    None of these
 Discuss Question
Answer: Option C. -> 87
$$\eqalign{
& a + b + c = 27\sqrt {29} \cr
& \Rightarrow 2c + \frac{3}{2}c + c = 27\sqrt {29} \cr
& \Rightarrow \frac{9}{2}c = 27\sqrt {29} \cr
& \Rightarrow c = 6\sqrt {29} \cr
& \therefore \sqrt {{a^2} + {b^2} + {c^2}} \cr
& = \sqrt {{{\left( {a + b + c} \right)}^2} - 2\left( {ab + bc + ca} \right)} \cr
& = \sqrt {{{\left( {27\sqrt {29} } \right)}^2} - 2\left( {2c \times \frac{3}{2}c + \frac{3}{2}c \times c + c \times 2c} \right)} \cr
& = \sqrt {\left( {729 \times 29} \right) - 2\left( {3{c^2} + \frac{3}{2}{c^2} + 2{c^2}} \right)} \cr
& = \sqrt {\left( {729 \times 29} \right) - 2 \times \frac{{13}}{2}{c^2}} \cr
& = \sqrt {\left( {729 \times 29} \right) - 13{{\left( {6\sqrt {29} } \right)}^2}} \cr
& = \sqrt {29\left( {729 - 468} \right)} \cr
& = \sqrt {29 \times 261} \cr
& = \sqrt {29 \times 29 \times 9} \cr
& = 29 \times 3 \cr
& = 87 \cr} $$
Question 436. The square root of $${\text{0}}{\text{.}}\overline {\text{4}} $$  is ?
  1.    $$0.\overline 6 $$
  2.    $$0.\overline 7 $$
  3.    $$0.\overline 8 $$
  4.    $$0.\overline 9 $$
 Discuss Question
Answer: Option A. -> $$0.\overline 6 $$
$$\eqalign{
& = \sqrt {{\text{0}}{\text{.}}\overline {\text{4}} {\text{ }}} \cr
& = \sqrt {\frac{4}{9}} \cr
& = \frac{2}{3} \cr
& = 0.666...... \cr
& = 0.\overline 6 \cr} $$
Question 437. $$\sqrt {0.2} = ?$$
  1.    0.02
  2.    0.2
  3.    0.447
  4.    0.632
 Discuss Question
Answer: Option C. -> 0.447
$$\eqalign{
& \,\,\,\,\,4|0\,.\,\overline {20} \,\,\overline {00} \,\,\overline {00} \,\,(.447 \cr
& \,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,16 \cr
& \,\,\,\,\,\,\,\,\,| - - - - - - - - - - \cr
& \,\,\,84|\,\,\,\,\,\,\,\,\,\,4\,00 \cr
& \,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,3\,36 \cr
& \,\,\,\,\,\,\,\,\,\,| - - - - - - - - - - \cr
& \,887|\,\,\,\,\,\,\,\,\,\,\,\,\,\,64\,00 \cr
& \,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,62\,09 \cr
& \,\,\,\,\,\,\,\,\,\,| - - - - - - - - - - \cr
& \therefore \sqrt {0.2} = 0.447 \cr} $$
Question 438. The value of $$\sqrt {\frac{{0.16}}{{0.4}}} $$   is = ?
  1.    0.02
  2.    0.2
  3.    0.63
  4.    None of these
 Discuss Question
Answer: Option C. -> 0.63
$$\eqalign{
& = \sqrt {\frac{{0.16}}{{0.4}}} \cr
& = \sqrt {\frac{{0.16}}{{0.40}}} \cr
& = \sqrt {\frac{{16}}{{40}}} \cr
& = \sqrt {\frac{4}{{10}}} \cr
& = \sqrt {0.4} \cr
& = 0.63 \cr} $$
Question 439. The value of $$\sqrt {0.121} $$   is = ?
  1.    0.011
  2.    0.11
  3.    0.347
  4.    1.1
 Discuss Question
Answer: Option C. -> 0.347
$$\eqalign{
& \,\,\,\,\,3|0\,.\,\overline {12} \,\,\overline {10} \,\,\overline {00} \,\,(0.347 \cr
& \,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,9 \cr
& \,\,\,\,\,\,\,\,\,| - - - - - - - - - - \cr
& \,\,\,64|\,\,\,\,\,\,\,\,\,\,3\,10 \cr
& \,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,2\,56 \cr
& \,\,\,\,\,\,\,\,\,\,| - - - - - - - - - - \cr
& \,687|\,\,\,\,\,\,\,\,\,\,\,\,\,\,54\,00 \cr
& \,\,\,\,\,\,\,\,\,\,|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,48\,00 \cr
& \,\,\,\,\,\,\,\,\,\,| - - - - - - - - - - \cr
& \therefore \sqrt {0.121} = 0.347 \cr} $$
Question 440. If $$\sqrt {x + \frac{x}{y}} = x\sqrt {\frac{x}{y}} {\text{,}}$$     where x and y are positive real numbers, then y is equal to ?
  1.    $${\text{x}} + 1$$
  2.    $${\text{x}} - 1$$
  3.    $${{\text{x}}^2} + 1$$
  4.    $${{\text{x}}^2} - 1$$
 Discuss Question
Answer: Option D. -> $${{\text{x}}^2} - 1$$
$$\eqalign{
& \Leftrightarrow \sqrt {x + \frac{x}{y}} = x\sqrt {\frac{x}{y}} \cr
& \Leftrightarrow x + \frac{x}{y} = {x^2}.\frac{x}{y} \cr
& \Leftrightarrow \frac{{xy + x}}{y} = \frac{{{x^3}}}{y} \cr
& \Leftrightarrow xy + x = {x^3} \cr
& \Leftrightarrow y + 1 = {x^2} \cr
& \Leftrightarrow y = {x^2} - 1 \cr} $$

Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024