(7 + 35)(7 - 35) = (7)2 - (35)2 = 49 - 45 = 4 = 2.
Answer : Option C
Explanation :
$MF#%\sqrt{0.000256 \times x} = 1.6 \\\\ \Rightarrow 0.000256 \times x = (1.6)^2 \\\\ \Rightarrow 0.000256\times x = 2.56 \\\\ \Rightarrow x = \dfrac{2.56}{0.000256} = \dfrac{2560000}{256} = 10000$MF#%
√0.0009
= √(9 / 10000)
= 3 / 100
= 0.03.
√(1 + (x / 144)) = 13 / 12
( 1 + (x / 144)) = (13 / 12 )2
= 169 / 144
x / 144 = (169 / 144) - 1
x / 144 = 25/144
x = 25.
Answer : Option B
Explanation :
$MF#%\begin{align}&x = \dfrac{\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)} = \dfrac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)} = \dfrac{\left(\sqrt{3}+1\right)^2}{3-1} = \dfrac{3 + 2\sqrt{3} + 1}{2}= \dfrac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}\\\\
&y = \dfrac{\sqrt{3}-1}{\sqrt{3}+1}= \dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)} = \dfrac{\left(\sqrt{3}-1\right)^2}{3-1} = \dfrac{3 - 2\sqrt{3} + 1}{2}= \dfrac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}\\\\
&x^2 + y^2 = \left(2 + \sqrt{3}\right)^2 + \left(2 - \sqrt{3}\right)^2 = (4 + 4\sqrt{3}+3) + (4 - 4\sqrt{3}+3) = 2(4+3)= 14\end{align}$MF#%
L.C.M. of 21, 36, 66 = 2772.
Now, 2772 = 2 x 2 x 3 x 3 x 7 x 11
To make it a perfect square, it must be multiplied by 7 x 11.
So, required number = 22 x 32 x 72 x 112 = 213444