Answer : Option A
Explanation :
$MF#%\sqrt[3]{\sqrt{0.000064}} = \sqrt[3]{\sqrt{\dfrac{64}{10^6}}} = \sqrt[3]{\dfrac{\sqrt{64}}{\sqrt{10^6}}} = \sqrt[3]{\dfrac{8}{10^3}}=\sqrt[3]{\dfrac{8}{1000}} = \dfrac{\sqrt[3]{8}}{\sqrt[3]{10}} = \dfrac{2}{10} = 0.2$MF#%
√ 0.09
=√ 9 / 100
=3 / 10
=0.3, which is rational.
Answer : Option D
Explanation :
3600 = 24 × 32 × 52
ie, the smallest number by which 3600 be divided to make it a perfect cube
= 2 × 32 × 52 = 2 × 9 × 25 = 450
A number ending in 8 can never be a perfect square.
Answer : Option D
Explanation :
$MF#%\sqrt{(14 + 2\sqrt{13})(14 - 2\sqrt{13})} = \sqrt{(14)^2 - (2\sqrt{13})^2} = \sqrt{196 - (4 \times 13)}\\\\ = \sqrt{196 - 52} = \sqrt{144} = 12$MF#%
Money collected=(59.29 x 100 )paise
=5929 paise.
Number of members√ 59291
=77.
√(5/3) =√(5 * 3) / (3 * 3)
=√15 / 3
= 3.88 / 3
= 1.2933..
= 1.293.
√(0.289 / 0.00121)
= √(0.28900/0.00121)
= √(28900/121)
= 170 / 11.
Answer : Option A
Explanation :
$MF#%\sqrt{\dfrac{0.289}{0.00121}}+ \sqrt{9} = \sqrt{\dfrac{28900}{121}} + 3 = \dfrac{\sqrt{28900}}{\sqrt{121}}+3 =\dfrac{170}{11} + 3 = 15.45+3 = 18.45$MF#%