Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 37 of 55 pages
Question 361.
What is the least perfect square which is divisible by each of 21, 36 and 66?
  1.    213444
  2.    214434
  3.    214344
  4.    231444
 Discuss Question
Answer: Option A. -> 213444

Answer : Option A

Explanation :

LCM of 21, 36, 66 = 2772
ie, all multiples of 2772 are divisible by 21, 36 and 66
Prime factorization of 2772 is,
2772 = 2 × 2 × 3 × 3 × 7 × 11
ie, to make it a perfect square, we have to multiply it by 7 and 11
Hence, required number = 2772 × 7 × 11 = 213444


Question 362.
$MF#%\text{if }\sqrt{7}=2.645\text{, then find the value of }\dfrac{\sqrt{7}}{2} - \dfrac{10}{\sqrt{7}} + \sqrt{175} $MF#%
  1.    7.22
  2.    8.92
  3.    6.72
  4.    10.77
 Discuss Question
Answer: Option D. -> 10.77

Answer : Option D

Explanation :

$MF#%\begin{align}&\dfrac{\sqrt{7}}{2} - \dfrac{10}{\sqrt{7}} + \sqrt{175}\\\\
&= \dfrac{\sqrt{7}}{2} - \dfrac{10}{\sqrt{7}} + \sqrt{7 \times 25}\\\\
&= \dfrac{\sqrt{7}}{2} - \dfrac{10}{\sqrt{7}} + 5\sqrt{7}\\\\
&=\dfrac{\left(\sqrt{7}\right)^2 - (2 \times 10) + (5\sqrt{7} \times 2\sqrt{7}) }{2\sqrt{7}}\\\\
&=\dfrac{7 - 20 + 70 }{2\sqrt{7}} = \dfrac{57}{2\sqrt{7}} \\\\&= \dfrac{28.5}{\sqrt{7}}
= \dfrac{28.5}{2.645} = \dfrac{28500}{2645} = 10.77\end{align}$MF#%

$MF#%\text{Please note that }\dfrac{57}{2\sqrt{7}}\text{ can be solved further in the below lines as well}
$MF#%

$MF#%\dfrac{57}{2\sqrt{7}} = \dfrac{57 \times \sqrt{7}}{2\sqrt{7} \times \sqrt{7}} = \dfrac{57\sqrt{7}}{14} \\\\
= \dfrac{57 \times 2.645}{14} = \dfrac{150.765}{14} = 10.77$MF#%


Question 363.

                     625      X      14      X      11      ... 625 x 14 x 11                      625      X      14      X      11      ... is equal to: 11 25 196


  1.    5
  2.    6
  3.    8
  4.    11
 Discuss Question
Answer: Option A. -> 5

Given Expression = 25 x 14 x 11 = 5. 11 5 14


Question 364.
$MF#%\text{If }3\sqrt{5} + \sqrt{125}\text{ = 17.88, then what will be the value of }\sqrt{80} + 16\sqrt{5}?$MF#%
  1.    21.66
  2.    13.41
  3.    22.35
  4.    44.7
 Discuss Question
Answer: Option D. -> 44.7

Answer : Option D

Explanation :

$MF#%\begin{align}&3\sqrt{5} + \sqrt{125}= 17.88\\\\
&\Rightarrow 3\sqrt{5} + \sqrt{25 \times 5}= 17.88\\\\
&\Rightarrow 3\sqrt{5} + 5\sqrt{5}= 17.88\\\\
&\Rightarrow 8\sqrt{5}= 17.88\\\\
&\Rightarrow \sqrt{5}= \dfrac{17.88}{8} = 2.235\\\\\\\\
&\sqrt{80} + 16\sqrt{5}= \sqrt{16 \times 5} + 16\sqrt{5} \\\\&= 4\sqrt{5} + 16\sqrt{5}= 20\sqrt{5} = 20 \times 2.235 = 44.7\end{align}$MF#%


Question 365.
Simplify: √[( 12.1 )2 - (8.1)2 / (0.25)2 + (0.25)(19.95)]



  1.    4
  2.    10
  3.    5
  4.    8
 Discuss Question
Answer: Option A. -> 4

Given exp. = √[(12.1 + 8.1)(12.1 - 8.1)/(0.25)(0.25 + 19.95)]
=√[(20.2 * 4) /( 0.25 * 20.2)]
=√4 / 0.25
= √400 / 25
=√16 = 4.


Question 366.

How many two-digit numbers satisfy this property.: The last digit (unit's digit) of the square of the two-digit number is 8 ?


  1.    1
  2.    2
  3.    3
  4.    None of these
 Discuss Question
Answer: Option D. -> None of these

A number ending in 8 can never be a perfect square.


Question 367.
$MF#%\sqrt{5.4756}\text{ = ?}$MF#%
  1.    2.24
  2.    1.24
  3.    1.34
  4.    2.34
 Discuss Question
Answer: Option D. -> 2.34

Answer : Option D

Explanation :

$MF#%\sqrt{5.4756} = 2.34$MF#%


Question 368.

The least perfect square, which is divisible by each of 21, 36 and 66 is:


  1.    213444
  2.    214344
  3.    214434
  4.    231444
 Discuss Question
Answer: Option A. -> 213444

L.C.M. of 21, 36, 66 = 2772.

Now, 2772 = 2 x 2 x 3 x 3 x 7 x 11

To make it a perfect square, it must be multiplied by 7 x 11.

So, required number = 22 x 32 x 72 x 112 = 213444


Question 369.

If x = 3 + 1 and y = 3 - 1 , then the value of (x2 + y2) is: 3 - 1 3 + 1


  1.    10
  2.    13
  3.    14
  4.    15
 Discuss Question
Answer: Option C. -> 14

x = (3 + 1) x (3 + 1) = (3 + 1)2 = 3 + 1 + 23 = 2 + 3. (3 - 1) (3 + 1) (3 - 1) 2

y = (3 - 1) x (3 - 1) = (3 - 1)2 = 3 + 1 - 23 = 2 - 3. (3 + 1) (3 - 1) (3 - 1) 2

       If X =      3 + 1     And  Y =      3 - 1     , Then ... x2 + y2 = (2 + 3)2 + (2 - 3)2

   = 2(4 + 3)

   = 14


Question 370.
$MF#%\sqrt{1\dfrac{9}{16}}\text{} = ?$MF#%
  1.    $MF#%1\dfrac{1}{6}$MF#%
  2.    $MF#%1\dfrac{1}{3}$MF#%
  3.    $MF#%1\dfrac{1}{2}$MF#%
  4.    $MF#%1\dfrac{1}{4}$MF#%
 Discuss Question
Answer: Option D. -> $MF#%1\dfrac{1}{4}$MF#%

Answer : Option D

Explanation :

$MF#%\sqrt{1\dfrac{9}{16}} = \sqrt{\dfrac{25}{16}} = \dfrac{\sqrt{25}}{\sqrt{16}} = \dfrac{5}{4} = 1\dfrac{1}{4}$MF#%


Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024