Menu
Popular Courses
Search

Quantitative Aptitude

SQUARE ROOT AND CUBE ROOT MCQs

Square Roots, Cube Roots, Squares And Square Roots


Total Questions : 547 | Page 36 of 55 pages
Question 351.

The value of `sqrt(10+ sqrt(25 + sqrt( 108 + sqrt(154 + sqrt(225)))))`  is


  1.    4
  2.    6
  3.    8
  4.    10
 Discuss Question
Answer: Option A. -> 4

Given exp.   `sqrt(10+ sqrt(25 + sqrt( 108 + sqrt(154 + sqrt(225)))))`

                       `sqrt(10+ sqrt(25 + sqrt( 108 + sqrt(154 + 15    ))))`

                       =`sqrt(10 +sqrt(25 + sqrt(108 +sqrt(169))))`=

                       =`sqrt(10 + sqrt(25 + sqrt(108  + 13)))`       =  `sqrt(10 + sqrt(25 + sqrt(121)))`

                    = `sqrt (10 + sqrt(25 + 11))`                       =  `sqrt(10  +sqrt(36))`

                      `sqrt(10 + 6)`         =   `sqrt(16)`        = 4.

     



Question 352.
140√? + 315 = 1015
  1.    25
  2.    15
  3.    5
  4.    50
 Discuss Question
Answer: Option A. -> 25

Answer : Option A

Explanation :

140√x + 315 = 1015
=> 140√x = 1015 - 315 = 700 = 140 × 5
=> √x = 5
=> x = 52 = 25


Question 353.
√ 50 x√ 98  is equal to



  1.    63.75
  2.    65.95
  3.    70
  4.    70.25
 Discuss Question
Answer: Option C. -> 70

√ 50 x√ 98 = √ 50 x 98


=>√ 4900 
70.


Question 354.
$MF#%\left(\sqrt{7} - \dfrac{1}{\sqrt{7}}\right)^2\text{ simplifies to:}$MF#%
  1.    $MF#%\dfrac{36}{\sqrt{7}}$MF#%
  2.    $MF#%\dfrac{7}{36}$MF#%
  3.    $MF#%\dfrac{36}{7}$MF#%
  4.    $MF#%\dfrac{7}{\sqrt{36}}$MF#%
 Discuss Question
Answer: Option C. -> $MF#%\dfrac{36}{7}$MF#%

Answer : Option C

Explanation :

$MF#%\left(\sqrt{7} - \dfrac{1}{\sqrt{7}}\right)^2 = \left(\sqrt{7}\right)^2 - 2 \times \sqrt{7} \times \dfrac{1}{\sqrt{7}} + \left(\dfrac{1}{\sqrt{7}}\right)^2 \\\\ = 7 - 2 + \dfrac{1}{7} = 5 + \dfrac{1}{7} = \dfrac{36}{7}$MF#%


Question 355.
Evaluate: √(9.5 * 0.0085 * 18.9) / (0.0017 * 1.9 * 0.021)



  1.    151
  2.    140
  3.    150
  4.    160
 Discuss Question
Answer: Option C. -> 150

Given exp. = √((9.5 * 0.0085 * 18.9) / (0.0017 * 1.9 * 0.021))
Now,
since the sum of decimal places in the numerator and denominator under
the radical sign is the same, we remove the decimal.
Given exp = √((95 * 85 * 18900) / (17 * 19 * 21))
= √(5 * 5 * 900)
= 5 * 30
= 150.



Question 356.
Find the least square number which is exactly divisible by 10,12,15 and 18.



  1.    800
  2.    600
  3.    700
  4.    900
 Discuss Question
Answer: Option D. -> 900

L.C.M. of 10, 12, 15, 18 = 180. Now, 180 = 2 * 2 * 3 * 3 *5 = 22 * 32 * 5.
To make it a perfect square, it must be multiplied by 5.
Required number = (22 * 32 * 52) = 900.



Question 357.
Find the value of √(25/16).



  1.    5 / 4
  2.    5 / 8
  3.    6 / 4
  4.    7 / 6
 Discuss Question
Answer: Option A. -> 5 / 4

√(25 / 16)
= √(25 / 16)
= 5 / 4



Question 358.
$MF#%\dfrac{1}{(\sqrt{9}-\sqrt{8})}-\dfrac{1}{(\sqrt{8}-\sqrt{7})}+\dfrac{1}{(\sqrt{7}-\sqrt{6})}-\dfrac{1}{(\sqrt{6}-\sqrt{5})}+\dfrac{1}{(\sqrt{5}-\sqrt{4})}\text{=?}$MF#%
  1.    1.5
  2.    .25
  3.    0.5
  4.    5
 Discuss Question
Answer: Option D. -> 5

Answer : Option D

Explanation :

$MF#%\dfrac{1}{(\sqrt{9}-\sqrt{8})} = \dfrac{(\sqrt{9}+\sqrt{8})}{(\sqrt{9}-\sqrt{8})(\sqrt{9}+\sqrt{8})}=\dfrac{(\sqrt{9}+\sqrt{8})}{9-8}= \sqrt{9}+\sqrt{8}\\\\$MF#%

$MF#%\text{Similarly all other terms can be rewritten. Thus,}\\\\
\dfrac{1}{(\sqrt{9}-\sqrt{8})}-\dfrac{1}{(\sqrt{8}-\sqrt{7})}+\dfrac{1}{(\sqrt{7}-\sqrt{6})}-\dfrac{1}{(\sqrt{6}-\sqrt{5})}+\dfrac{1}{(\sqrt{5}-\sqrt{4})}\\\\
= (\sqrt{9}+\sqrt{8}) - (\sqrt{8}+\sqrt{7}) + (\sqrt{7}+\sqrt{6}) - (\sqrt{6}+\sqrt{5}) + (\sqrt{5}+\sqrt{4})\\\\
=\sqrt{9}+\sqrt{4} = 3 + 2 = 5$MF#%


Question 359.
If 2 * 3 =
√ 12  
and 3 * 4 = 5, then the value of 5 * 12 is



  1.    13
  2.    15
  3.    21
  4.    18
 Discuss Question
Answer: Option A. -> 13

Clearly, a * b =
√ a2 + b2
Therefore, 5 * 12=√ 52 + 122.
 =>√ 25 + 144.
 =>√ 169.
 =>13.


Question 360.
The cube root of 0.000729 is
  1.    0.09
  2.    0.9
  3.    0.21
  4.    0.11
 Discuss Question
Answer: Option A. -> 0.09

Answer : Option A

Explanation :

$MF#%(0.000729)^{1/3} = \left(\dfrac{729}{10^6}\right)^{1/3} = \dfrac{9}{10^2} = \dfrac{9}{100} = .09$MF#%


Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024