Let `sqrt(x/169)` = `54/39` , Then `sqrt(x)/13` = `54/39` `hArr` ` sqrt(x)` = `(54/39 xx 13)` = 18`hArr` `x` = `(18)^2`=324
Let `28sqrt(x)` + 1426 = `3/4` x 2872
`28sqrt(x)` + 1426 = 3 x 718.
Then `28sqrt(x)` = 2154 - 1426 `hArr` `28sqrt(x)` = 728 `hArr` `sqrt(x)` = 26 `hArr` `x` = `(26)^2`
`x` = 676
`sqrt(18 xx 14 xx x)` = 84 `hArr` 18 x 14 x `x` = 84 x 84 `hArr` `x` = `(84xx84)/(18xx14) = 28.`
`sqrt(3^n)` = 729 = `3^6` `hArr` (`sqrt(3^n)^2`) = `(3^6)^2` `hArr` `3^n` = `3^12` `hArr` n = 12.
Let the required number be `x`. Then , `x/sqrt(0.25)` = 25 `hArr` `x/0.5` = 25 `hArr` `x` = 25 x 0.5 = 12.5.
`0.13/p^2` = 13 `hArr` `p^2` = `0.13/13`= `1/100` `hArr` p = `sqrt(1/100)` = `1/10` = 0.1
Let `x/sqrt(128)` = `sqrt(162)/x`
Then , `x^2` = `sqrt(128xx162)` = `sqrt(64 xx 2 xx 18 xx 9)` =` sqrt(8^2 xx 6^2 xx 3^2)` = 8 x 6 x 3 = 144
`:.` `x` = ` sqrt(144) `= 12.
Let `(4 1/2)/(x)` = `x/32`. Then `x^2` = 32 x `9/2` = 144 `hArr` `x` = `sqrt(144)` = 12
Let the missing number be `x`.
Then `x^2` = 15 x 135 `hArr` `x` = `sqrt(15 xx 135)` = `sqrt(15^2 xx 3^2)` = 15 x 3 = 45
`52/x` =` sqrt(169/289)` `hArr` `52/x` = `13/17` `hArr` `x` = `((52xx17)/(13))` = 68.