`sqrt(1 + x/169)` = `14/13` `rArr` 1 + `x/169` = `196/169` `rArr` `x/169` = `(196/169 - 1)` = `27/169``rArr` `x` = 27
`sqrt(48.4/0.289)` = `sqrt(48.400/0.289)` = `sqrt(48400/289)` = `220/17` = `12 16/17`
`sqrt(0.361/0.00169)` = `sqrt(0.36100/0.00169 ` = `sqrt(36100/189)` = `190/13`
Let the number be `x` then,
`3/5 x^2 `= 126.15 `hArr` `x^2` = ` (126.15xx 5/3)` = 210.25 `hArr` `x` = `sqrt(210.25)` = 14.5.
`sqrt(a)/sqrt(b)` = `(.004xx4)/(sqrt(.04xx4))` `hArr` `a/b` = ` (.004xx.4xx.004xx.4)/(.04xx.4)` = `.0000064/.04`
`:.` `a/b` = ` .00064/4` = .00016 = `16/10^5` = 16 x `10^-5`
`sqrt((x - 1) (y + 2))` = 7 `hArr` (`x - 1 (y + 2)` = `7^2` `hArr` `(x - 1)` = 7 and ( y + 2) = 7
`hArr` `x` = 8 and y = 5.
`sqrt(1369) + sqrt(.0615 + x)` = 37.25, = 37 + `sqrt(.0615 + x)` = 37.25 `hArr` `sqrt(.0615 + x)` = 0.25
`hArr` .0615 + `x` = `(0.25)^2` = 0.0625 `hArr` `x` = .001 = `1/10^3` = `10^-3`
Let `sqrt(0.0169 xx x)` = 1.3, Then , 0.0169`x` = `(1.3)^2` = 1.69 `hArr` `x` = `1.69/0.0169` = 100
Let `sqrt(.0196/?)` = 0.2 , Then , `.0196/x `= 0.04 `hArr` `x` = `.0196/.04` = `1.96/4` = .49
`sqrt(x)/sqrt(441)` = 0.02 `hArr` `sqrt(x)/21` = 0.02 `hArr` `sqrt(x)` = 0.02 x 21 = 0.42 `hArr` `x` = `(0.42)^2` = 0.1764.