Sum of decimal places in the numerator and denominator under the radical sign being the same, we remove the
decimal.
`:.` Given exp = `sqrt((.081 xx .484)/(.0064 xx 6.25))` = `sqrt((81 xx 484)/(64 xx 625))`
= `(9 xx 22)/(8 xx 25)` = 0.99
`(3sqrt(12))/(2sqrt(28))` `-:` `(2sqrt(21))/(sqrt(98))` =`(3sqrt(12))/(2sqrt(28))` x `(sqrt(98))/(2sqrt(21))`
=`(3sqrt(4 xx 3))/(2sqrt(4 xx 7))` x` (sqrt(49 xx 2))/(2sqrt(21))` = `(6sqrt(3))/(4sqrt(7))` x `(7sqrt(2))/(2sqrt(21))`
= `(21sqrt(6))/(4sqrt(7 xx 21))` = `(21sqrt(6))/(28sqrt(3))` = `3/4`` sqrt(2)`= `3/4` x 1.414 = 3 x 0.3525 = 1.0605
Given exp. = `sqrt(8) + 2sqrt(32) - 3sqrt(128) + 4sqrt(50)`
= `sqrt(4 xx 2) + 2sqrt(16 xx 2) - 3sqrt(64 xx 2) + 4sqrt(25 xx 2)`
= `2sqrt(2) + 8sqrt(2) - 24sqrt(2) + 20sqrt(2)` = `6sqrt(2)` = 6 x 1.414 = 8.484.
`sqrt(50) xx sqrt(98)` = `sqrt(50 xx 98)` = `sqrt(4900)` = 70.
`3sqrt(5) + sqrt(125)` = 17.88, `rArr` ` 3sqrt(5) + sqrt(25 xx 5)` = 17.88
`rArr` `3sqrt(5) + 5sqrt(5)` = 17.88 `rArr` ` 8sqrt(5)` = 17.88 `rArr` ` sqrt(5) `= 2.235.
`:.` `sqrt(80) + 6sqrt(5)` = `sqrt(16 xx 5) + 6sqrt(5)` = `4sqrt(5) + 6sqrt(5)` = `10sqrt(5)`
= (10 x 2.235) = 22.35
`(sqrt(80) - sqrt(112))/ (sqrt(45) - sqrt(63))` = `(sqrt(16 xx 5) - sqrt(16 xx 7))/(sqrt(9 xx 5) - sqrt(9 xx 7))`
= `(4sqrt(5) - 4sqrt(7))/(3sqrt(5) - 3sqrt(7))` = `(4(sqrt(5) - sqrt(7)))/(3(sqrt(5) - sqrt(7)))` = `4/3` = `1 1/3`
`(sqrt(24) + sqrt(216))/(sqrt(96))` = `(sqrt(4 xx 6) + sqrt(36 xx 6))/(sqrt(16 xx 6))`
= `(2sqrt(6) + 6sqrt(6))/(4sqrt(6))` =`(8sqrt(6))/(4sqrt(6))` = 2
`(sqrt(12) + sqrt(18)) - (sqrt(3) + sqrt(2))` = `(sqrt(4xx3) +sqrt(9xx2)) - (sqrt(3) + sqrt(2))`
`(2sqrt(3) + 3sqrt(2)) - (sqrt(3) +sqrt(2))` = `(2sqrt(3) - sqrt(3)) + (3sqrt(2) - sqrt(2))`
= `sqrt(3) + 2sqrt(2)`.
`(2sqrt(27) - sqrt(75) + sqrt(12))` = `2sqrt(9 xx 3) - sqrt(25 xx 3) + sqrt(4 xx 3)`
= `6sqrt(3) - 5sqrt(3) + 2sqrt(3)` = `3sqrt(3)`
`sqrt(1 + 55/729)` = 1 + `x/27` `rArr` `sqrt(784/729)` = `(27 + x)/(27)` `rArr` `28/27` =` (27 + x)/(27)`
`rArr` 27 + `x` = 28 `rArr` `x` = 1.