L.C.M. of 3, 4, 5, 6, 8 is 120, Now 120 = 2 x 2 x 2 x 3 x 5.
To make it a perfect square, is must be multiplied by 2 x 3 x 5
So required number = `2^2 xx 2^2 xx 3^2 xx 5^2` = 3600
Clearly , `a ** b ` = `sqrt(a^2 + b^2)`
`:.` `5**12` = `sqrt(5^2 + 12^2)` = `sqrt(25 + 144)` = `sqrt(169)` = 13.
`sqrt(5)/2 - 10/sqrt(5) + sqrt(125)` = `(sqrt(5)^2 - 20 + 2sqrt(5) xx 5sqrt(5))/(2sqrt(5))`
= `(5 - 20 + 50)/(2sqrt(5))` = `(35)/(2sqrt(5))`
= `(35)/(2sqrt(5))` x `sqrt(5)/sqrt(5)` = `(35sqrt(5))/(10)`
= `7/2` x 2.236 = 7 x 1.118 = 7.826
`(3sqrt(2))/(2sqrt(3))` = `(3sqrt(2))/(2sqrt(3))` x `sqrt(3)/sqrt(3)` = `(3sqrt(6))/(2xx3)` = `sqrt(6)/2` = `2.449/2` = 1.2245.
`sqrt(8/3)` = `sqrt((8 xx 3)/(3 xx 3))` = `sqrt(24)/3` = `4.899/3` = 1.633
`1/sqrt(5)` = `1/sqrt(5) xx sqrt(5)/sqrt(5)` = `sqrt(5)/5 ` = `2.236/5` = 0.447
`(1 + sqrt(0.01))/(1 - sqrt(0.1))` = `(1 + 0.1)/(1 - 0.316)` = `1.1/0.684`
= `1100/684` = 1.6
`sqrt(0.16/0.4)` = `sqrt(0.16/0.40)` = `sqrt(16/40)`= `sqrt(4/10)` = `sqrt(0.4)` = 0.63.
`sqrt(0.09)` = `sqrt(9/100)` = `3/10` = 0.3, which is rational.
`:.` 0.09 has rational square root.
`sqrt(0.overline(4))` = `sqrt(4/9)` = `2/3` = 0.666............ = `0. overline(6)`