P = (184*106) / [6 2/3 * 6 2/3 *(300*6 2/3)]
P = 13500
P(11/10)4 - P(6/5)2 = 482
P = 2000
P = 15(100/10)2 =>
P = 1500
P =
144(100/5)2 => P
= 3600
8820 ---- 441
100 ---- ? =>
5%
x *105/100 * 105/100 = 8820
x*1.1025=8820
x=8820/1.1025 => 8000
A= P{1 + R/100}n => 8000{1 + 10/100}2 = Rs.9680
Let the sum be Rs.P P{ [ 1 + 8/100]2 - 1 } = 2828.80 P(8/100)(2 + 8/100) = 2828.80 [a2 - b2 = (a - b) ( a + b)]
P = 2828.80 / (0.08)(2.08) = 1360/0.08 = 17000
Principal + Interest = Rs. 19828.80
CI = 14800{ [ 1 + 13.5/100]2 - 1 } = 14800 { [1 + 27/200]2 - 1 = 14800 { 2 + 27/200}{27/200} = (74)[2 + 27/200](27)
= 1998[2 + 27/200] = 3996 + 269.73 = Rs. 4266
Let the rate of interest be R% p.a. 17400[1 + R/100]2 = 17400 + 1783.50 [1 + R/100]2 = (17400 + 1783.50)/17400 = 1 + 1025/10000 = 1 + 41/400 = 441/400 = [21/20]2 [1 + R/100] = 21/20 R/100 = 1/20 Therefore R = 5
Rs.1440 - 1200 = Rs.240 is the interest on Rs.1200 for one year. Rate of interest = (100 * 240) / (100 * 1) = 20% p.a