Menu
Popular Courses
Search

Quantitative Aptitude > Interest

SIMPLE & COMPOUND INTEREST MCQs

Compound Interest, Simple Interest, Interest (combined)


Total Questions : 1171 | Page 58 of 118 pages
Question 571.
Divide Rs. 3364 between A and B, so that A's Share at the end of 5 years may equal to B's share at the end of 7 years, compound interest being at 5 percent.
  1.    Rs. 1764 and Rs.1600
  2.    Rs. 1756 and Rs.1608
  3.    Rs. 1722 and Rs.1642
  4.    None of these
 Discuss Question
Answer: Option A. -> Rs. 1764 and Rs.1600

Answer : Option A

Explanation :

A's share after 5 years = B's share after 7 years
$MF#%\text{(A's present share)}\left(1 + \dfrac{5}{100}\right)^5 = \text{(B's present share)}\left(1 + \dfrac{5}{100}\right)^7\\\\ => \dfrac{\text{(A's present share)}}{\text{(B's present share)}}=\dfrac{\left(1 + \dfrac{5}{100}\right)^7}{\left(1 + \dfrac{5}{100}\right)^5} = \left(1 + \dfrac{5}{100}\right)^{(7-5)} = \left(1 + \dfrac{5}{100}\right)^2 = \left(\dfrac{21}{20}\right)^2 = \dfrac{441}{400}$MF#%
i.e, A's present share : B's present share = 441 : 400
$MF#%\text{Since the total present amount is Rs.3364, A's share = }3364 \times \dfrac{441}{(441+400)} \\\\ = 3364 \times \dfrac{441}{841} = 4 \times 441 = \text{ Rs. 1764}$MF#%
B's present share = 3364 - 1764 = Rs.1600


Question 572.
Find compound interest on Rs. 7500 at 4% per annum for 2 years, compounded annually.



  1.    600
  2.    602
  3.    612
  4.    622
 Discuss Question
Answer: Option C. -> 612

Amount = Rs [7500*(1+(4/100)^2] = Rs (7500 * (26/25) * (26/25)) = Rs. 8112
therefore, C.I. = Rs. (8112 - 7500) = Rs. 612.



Question 573.
Find compound interest on Rs. 8000 at 15% per annum for 2 years 4 months, compounded annually.



  1.    3107
  2.    3109
  3.    3111
  4.    3113
 Discuss Question
Answer: Option B. -> 3109

Time = 2 years 4 months = 2(4/12) years = 2(1/3) years.
Amount = Rs. [8000 X (1+(15/100))^2 X (1+((1/3)*15)/100)]
=Rs.[8000 * (23/20) * (23/20) * (21/20)]=Rs. 11109
C.I.=Rs.(11109-8000)=Rs.3109.



Question 574.
If the simple interest on a sum of money at 5% per annum for 3 years is
Rs. 1200, find the compound interest on the same sum for the same
period at the same rate.



  1.    1251
  2.    1261
  3.    1271
  4.    1281
 Discuss Question
Answer: Option B. -> 1261

Clearly, Rate=5% p.a .,
Time=3 years
S.I =Rs.1200.
So,Principal=Rs.(100 x 1200/3x5)
=Rs.8000.
Amount=Rs.[8000 x (1+5/100)3]
=Rs(8000x21/20x21/20x21/20)
=Rs.9261
C.I=Rs.(9261-8000)
=Rs.1261.



Question 575.
Simple interest on a sum at 5% per annum for 2 years is Rs. 60. The compound interest on the same sum for the same period is
  1.    Rs. 62.4
  2.    Rs. 61.5
  3.    Rs. 62
  4.    Rs. 60.5
 Discuss Question
Answer: Option B. -> Rs. 61.5

Answer : Option B

Explanation :

--------------------------------------------------------------------------------------
Solution 1
--------------------------------------------------------------------------------------
$MF#%\text{Principal = }\dfrac{100 \times \text{SI}}{\text{RT}}= \dfrac{100 \times 60}{5 \times 2} = \text{Rs. 600}\\\\ \text{Compound Interest = }\text{P}\left(1 + \dfrac{\text{R}}{100}\right)^\text{T} - \text{P}\\\\ = 600\left(1 + \dfrac{5}{100}\right)^2 - 600 = 600\left(\dfrac{21}{20}\right)^2 - 600 = 661.5 - 600 = \text{Rs. 61.5}$MF#%
--------------------------------------------------------------------------------------
Solution 2
--------------------------------------------------------------------------------------
The difference between compound interest and simple interest on Rs. P for 2 years at R% per annum
$MF#% = \dfrac{\text{R} \times \text{SI}}{2 \times 100} $MF#%

Question 576.
A sum is invested for 3 years compounded at 5%, 10% and 20 % respectively. In three years, if the sum amounts to Rs. 1386, then find the sum.
  1.    Rs. 1500
  2.    Rs. 1400
  3.    Rs. 1200
  4.    Rs. 1000
 Discuss Question
Answer: Option D. -> Rs. 1000

Answer : Option D

Explanation :


$MF#%1386 = \text{P}\left(1 + \dfrac{5}{100}\right)\left(1 + \dfrac{10}{100}\right)\left(1 + \dfrac{20}{100}\right)\\\\ 1386 = \text{P}\left(\dfrac{21}{20}\right)\left(\dfrac{11}{10}\right)\left(\dfrac{6}{5}\right)\\\\ \text{P} = \dfrac{1386 \times 20 \times 10 \times 5}{21 \times 11 \times 6} = \dfrac{66\times 20 \times 10 \times 5}{11 \times 6} = 20 \times 10 \times 5 = \text{Rs. 1000}$MF#%
i.e., the sum is Rs.1000


Question 577.
In what time will Rs. 1000 become Rs. 1331 at 10% per annum compounded annually?



  1.    1
  2.    2
  3.    3
  4.    4
 Discuss Question
Answer: Option C. -> 3


Principal = Rs. 1000; Amount = Rs. 1331; Rate = 10% p.a.
Let the time be n years. Then,
[ 1000 (1+ (10/100))^n ] = 1331 or (11/10)^n = (1331/1000) = (11/10)^3
n = 3 years



Question 578.
On a certain sum of money, the simple interest for 2 years is Rs. 200 at the rate of 7% per annum. Find the difference in C.I. and S.I.
  1.    None of these
  2.    Rs. 9
  3.    Rs. 7
  4.    Rs. 11
 Discuss Question
Answer: Option C. -> Rs. 7

Answer : Option C

Explanation :

--------------------------------------------------------------------------------------
Solution 1
---------------------------------------------------------------------------------------
Simple Interest for 2 years = Rs.200
$MF#%\text{Sum, P} = \dfrac{100 \times \text{SI}}{\text{RT}} = \dfrac{100 \times 200}{7 \times 2} = \dfrac{100 \times 100}{7}\\\\ \text{Compound Interest = }\text{P}\left(1 + \dfrac{\text{R}}{100}\right)^\text{T} - \text{P}\\\\ = \text{P}\left(1 + \dfrac{7}{100}\right)^2 - \text{P} = \text{P}\left[\left(1 + \dfrac{7}{100}\right)^2 - 1\right] = \text{P}\left(1 + \dfrac{14}{100} + \dfrac{49}{10000} - 1\right)=\text{P}\left(\dfrac{14}{100} + \dfrac{49}{10000}\right) \\\\= \dfrac{100 \times 100}{7}\left(\dfrac{14}{100} + \dfrac{49}{10000}\right)=200 + 7 = \text{Rs. }207$MF#%
Required Difference = 207 - 200 = Rs.7
--------------------------------------------------------------------------------------
Solution 2
---------------------------------------------------------------------------------------
The difference between compound interest and simple interest on Rs. P for 2 years at R% per annum
$MF#% = \dfrac{\text{R} \times \text{SI}}{2 \times 100} $MF#%

Question 579.
The compound interest on Rs. 30,000 at 7% per annum is Rs. 4347. The period (in years) is



  1.    2
  2.    2½
  3.    3
  4.    4
 Discuss Question
Answer: Option A. -> 2

Amount=Rs(30000+4347)
=Rs.34347.
Let the time be n years.
Then,30000(1+7/100)^n
=34347.
=34347/3000
=11449/1000
=(107/100)^n
n=2years.



Question 580.
A sum of money placed at compound interest doubles itself in 4 years. In how many years will it amount to 8 times?
  1.    10 years
  2.    8 years
  3.    6 years
  4.    12 years
 Discuss Question
Answer: Option D. -> 12 years

Answer : Option D

Explanation :

Let the sum be Rs.1 which becomes Rs.2 after 4 years
$MF#%\Rightarrow 2 = 1\left(1 + \dfrac{\text{R}}{100}\right)^4 \quad \color{#F00}{\text{--- (equation 1)}}$MF#%
Let the sum of Rs.1 becomes Rs.8 after n years
$MF#%\Rightarrow 8 = 1\left(1 + \dfrac{\text{R}}{100}\right)^n \quad \color{#F00}{\text{--- (equation 2)}}\\\\ \Rightarrow (2)^3 = 1\left(1 + \dfrac{\text{R}}{100}\right)^n \\\\ \Rightarrow \left[1\left(1 + \dfrac{\text{R}}{100}\right)^4
\right]^3 = 1\left(1 + \dfrac{\text{R}}{100}\right)^n \quad \color{#F00}{\text{(∵ replaced 2 with the value in equation 1)}}\\\\ \left(1 + \dfrac{\text{R}}{100}\right)^{12} = \left(1 + \dfrac{\text{R}}{100}\right)^n\\\\ \text{n} = 12$MF#%
i.e., the sum amounts to 8 times in 12 years


Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024