Let the sum be Rs. `x` , Then ,
C.I. = `x(1 + 10/100)^2 - x = (21x)/(100),`
S.I. = `((x xx 10 xx 2)/(100)) = x/5`.
`:.` (C.I.) - (S.I.) = `((21x)/(100) - x/5) = x/100`
`:.` ` x/100 = 631`
`hArr x`= 63100
Hence , the sum is Rs. 63,100.
Let the sum be Rs. `x`. Then
C.I. = `[x xx (1 + (50)/(3 xx 100)^3 - x] = ((343x)/(216) - x) = (127x)/(216)`
`:.` ` (127x)/(216) = 1270`
or `x = (1270 xx 216)/(127)`
or `x = 2160`
Thus , he sum is Rs. 2160.
`:.` S.I. = Rs.`(2160 xx 50/3 xx 3 xx 1/100)` = Rs. 1080
Principal = Rs. 500 Amount = Rs. 583.20 , Time = 2 years
Let the rate be R% per annum , Them
`[ 500 (1 + R/100)^2] = 583.20`
or `(1 + R/100)^2 = 583.2/500`
or `(1 + R/100)^2 = 5832/5000`
or `(1 + R/100)^2 = 11664/10000`
or `(1 + R/100)^2 = (108 /100)^2`
or ` 1 + R/100 = 108/100`
or `(100 + R)/(100) = 108/100`
or R = 108 - 100 = 8
or R = 8
So , rate = 8% p.a.
Principal = Rs. 1000 amount = Rs. 1331 Rate = 10% p.a.
Let the time be n years , Then ,
= `[1000 (1 + 10/1000)^n]` = 1331
or ` (11/10)^n = (1331/1000)`
or `(11/10)^n = (11/10)^3`
or n = 3
`:.` n = 3 years.
Clearly rate = 5% p.a. Time = 3 years, S.I. = Rs. 1200
So principal = Rs. `((100 xx 1200)/(3 xx 5))` = Rs. 8000
Amount = Rs`[8000 xx (1 + 5/100)^3]`
= Rs.` (8000 xx 21/20 xx 21/20 xx 21/20)`
= Rs. 9261
`:.` C.I. = Rs. 9261 - 8000) = Rs. 1261.
Principal = Rs. 16000 , Time = 9 months = 3 quarters.
Rate = 20% per annum = 5% per annum
`:.` Amount = Rs.` [16000 xx (1 + 5/100)^3]`
= Rs. `(16000 xx 21/20 xx 21/20 xx 21/20)`
=Rs. 18522
`:.` C.I. = Rs. (18522 - 16000)
=Rs. 2522
principal = Rs. 10000, Rate = 2% per half year , Time = 2 years = 4 half years
`:.` Amount = Rs.` [10000 xx (1 + 2/100)^4]`
= Rs. ` (10000 xx 51/50 xx 51/50 xx 51/50 xx 51/50)`
= Rs. 10824.32.
`:.` C.I. = Rs. (10824.32 - 10000) = Rs. 824.32
Time = 2 years 4 months = `2 4/12` years = `2 1/3` years.
Amount = Rs` [8000 xx (1 + 15/100)^2 xx (1 + (1/3 xx 15)/(100))]`
=Rs.` (8000 xx 23/20 xx 23/20 xx 21/20)`
= Rs. 11109
`:.` C.I. = Rs. (11109 - 8000) = Rs. 3109.
Amount = Rs.` [7500 xx(1 + 4/100)^2]`
= Rs. `(7500 xx 26/25 xx 26/25)` = Rs. 8112.
`:.` C.I. = Rs. (8112 - 7500) = Rs. 612.
Answer : Option A
Explanation :
Let the sum be P
$MF#%\text{Time, T} = 1\dfrac{1}{2}\text{ year} = \dfrac{3}{2}\text{ year}\\\\ \text{Amount after }1\dfrac{1}{2}\text{ years} = \text{P}\left(1 + \dfrac{\text{(R/2)}}{100}\right)^\text{2T} = \text{P}\left(1 + \dfrac{(4/2)}{100}\right)^{2 \times \frac{3}{2}} = \text{P}\left(1 + \dfrac{2}{100}\right)^3\\\\= \text{P}\left(\dfrac{102}{100}\right)^3=\text{P}\left(\dfrac{51}{50}\right)^3$MF#%
Given that amount after 11â„2 years = 13265.10
$MF#%=> \text{P}\left(\dfrac{51}{50}\right)^3 = 13265.10\\\\ => \text{P} = 13265.10\left(\dfrac{50}{51}\right)^3 = \dfrac{13265.10 \times 50 \times 50 \times 50}{51 \times 51 \times 51} = \dfrac{260.1 \times 50 \times 50 \times 50}{51 \times 51}= \dfrac{5.1 \times 50 \times 50 \times 50}{51}\\\\ = 0.1 \times 50 \times 50 \times 50 = \text{Rs. 12500}$MF#%