Principal = Rs.`[(4913)/(1 + (25)/(4 xx 100))^3]`
=Rs. `(4913 xx 16/17 xx 16/17 xx 16/17)`
= Rs. 4096.
Let the rate be R% p.a. Then ,
`1200 xx (1 + R/100)^2 = 1348.32`
`hArr (1 + R/100)^2 = 134832/120000` = `11236/10000`
`:.` `(1 + R/100)^2 = (106/100)^2`
or `1 + R/100 = 106/100`
or R = 6%
Amount = Rs. (30000 + 4347 ) = Rs. 34347.
Let the time be n years . Then .
`30000(1 + 7/100)^n = 34347`
`hArr (107/100)^n = 34347/30000`
`hArr (107/100)^n = 11449/10000`
`hArr (107/100)^n = (107/100)^2`
`:.` n = 2 years.
S.I. = Rs. `((1200 xx 10 xx 1)/(100))` = Rs. 120
C.I. = Rs. `[ 1200 xx (1 xx 5/100)^2 - 1200 ]` = Rs. 123
`:.` Difference = Rs. (123 - 120) = Rs. 3
S.I. = Rs.` ((1000 xx 10 xx 4)/(100))` = Rs. 400
C.I. = Rs. `[1000 xx (1 + 10/100)^4 - 1000]` = Rs. 464.10
`:.` Difference = Rs. (464.10 - 400) = Rs. 64.10
Sum = Rs. `((50 xx 100)/(2 xx 5))` = 500
Amount = Rs. `[500 xx (1 + 5/100)^2]`
= Rs. `(500 xx 21/20 xx 21/20)` = Rs. 551.25
`:.` C.I. = Rs. (551.25 - 500) = Rs. 51.25
P = Rs. 15625, n = 9 months = 3 quarters ,. R= 16% p.a. = 4% per quarter
Amount = Rs. `[15625 xx (1 + 4/100)^3]`
= Rs.` (15625 xx 26/25 xx 26/25 xx 26/25) `
= Rs. 17576
`:.` C.I. = Rs(17576 - 15625)
= Rs. 1951.
C.I. when interest is compounded yearly
Rs = . `[5000 xx ( 1 + 4/100) xx (1 + (1/2 xx 4)/(100))]`
Rs. = `(5000 xx 26/25 xx 51/50)` = Rs. 5304
C.I. when interest is compounded half - yearly
= Rs.` [5000 xx (1 + 2/100)^3]`
= Rs . `(5000 xx 51/50 xx 51/50 xx 51/50)` = Rs. 5306.04
`:.` Difference = Rs. (5306.04 - 5304 ) = Rs. 2.04
Amount = Rs. `[1600 xx (1 + (5)/(2 xx 100)^2 + 1600(1 + (5)/(2 xx 100)]`
= Rs. `[1600 xx 41/40 xx 41/40 + 1600 xx 41/40]`
= Rs. `[1600 xx 41/40(41/40 +1)]`
= Rs. `((1600 xx 41 xx 81)/(40 xx 40))`
= Rs. 3321.
`:.` C.I. = Rs. (3321 - 3200) = Rs. 121.
P = Rs. 15000 R = 10% p.a. = 5% per half year , T = 1 year = 2 half year
`:.` Amount = Rs.` [ 15000 xx (1 + 5/100)^2]`
= Rs. `(15000 xx 21/20 xx 21/20)` = Rs. 16537.50