Menu
Popular Courses
Search

Quantitative Aptitude > Interest

SIMPLE & COMPOUND INTEREST MCQs

Compound Interest, Simple Interest, Interest (combined)


Total Questions : 1171 | Page 45 of 118 pages
Question 441.
Find the simple interest on Rs. 68,000 at 16 2/3% per annum for 9 months.



  1.    7500
  2.    8000
  3.    8500
  4.    9000
 Discuss Question
Answer: Option C. -> 8500

P = Rs.68000,R = 50/3% p.a and T = 9/12 years = 3/4years.
S.I. = (P*R*T)/100 = Rs.(68,000*(50/3)*(3/4)*(1/100))= Rs.8500



Question 442.
What annual payment will discharge a debt of Rs. 6450 due in 4 years at 5% per annum?
  1.    Rs.1500
  2.    Rs.1400
  3.    Rs.1800
  4.    Rs.1600
 Discuss Question
Answer: Option A. -> Rs.1500

Answer : Option A

Explanation :

--------------------------------------------------------------------------
Solution 1
--------------------------------------------------------------------------
The amount needs to be repaid in 4 years = Rs.6450
Suppose Rs.x is paid annually to repay this debt
Then, amount paid after 1st year = Rs.x
$MF#%\text{Interest for this Rs.x for the remaining 3 years = }\dfrac{x \times 5 \times 3}{100}= \dfrac{15x}{100}$MF#%
Then, amount paid after 2nd year = Rs.x
$MF#%\text{Interest for this Rs.x for the remaining 2 years = }\dfrac{x \times 5 \times 2}{100}= \dfrac{10x}{100}$MF#%
Amount paid after 3rd year = Rs.x
$MF#%\text{Interest for this Rs.x for the remaining 1 year = }\dfrac{x \times 5 \times 1}{100}= \dfrac{5x}{100}$MF#%
Amount paid after 4th year = Rs.x and this closes the entire debt
$MF#%\begin{align}&=> x + \dfrac{15x}{100} + x + \dfrac{10x}{100} + x + \dfrac{5x}{100} + x = 6450\\\\ &=> 4x + \dfrac{30x}{100} = 6450\\\\ &=> 4x + \dfrac{3x}{10} = 6450\\\\ &=> 40x + 3x = 64500\\\\ &=> 43x = 64500\\\\&=> x = 1500\end{align}$MF#%
--------------------------------------------------------------------------
Solution 2 (using formula)
--------------------------------------------------------------------------
The annual instalment which will discharge a debt of D due in T years at R% simple interest per annum
$MF#%= \dfrac{\text{100D}}{\text{100T} + \dfrac{\text{RT(T-1)}}{2}}$MF#%

Question 443.
A sum of Rs. 7700 is to be divided among three brothers Vikas, Vijay and Viraj in such a way that simple interest on each part at 5% per annum after 1, 2 and 3 years respectively remains equal. The Share of Vikas is more than that of Viraj by
  1.    Rs.1200
  2.    Rs.1400
  3.    Rs.2200
  4.    Rs.2800
 Discuss Question
Answer: Option D. -> Rs.2800

Answer : Option D

Explanation :

--------------------------------------------------------------------------------------
Solution 1
--------------------------------------------------------------------------------------
Let Vikas, Vijay and Viraj gets Rs.x, Rs.y and Rs.z respectively.
Simple Interest on x at 5% for 1 year
= Simple Interest on y at 5% for 2 year
= Simple Interest on z at 5% for 3 year
$MF#%\begin{align}&\Rightarrow \dfrac{x \times 5 \times 1}{100} = \dfrac{\text{y} \times 5 \times 2}{100} = \dfrac{\text{z} \times 5 \times 3}{100}\\\\ &\Rightarrow5x = 10\text{y} = 15\text{z}\\\\ &\Rightarrow x = 2\text{y} = 3\text{z}\\\\ &\Rightarrow \text{y} = \dfrac{x}{2} \text{ and }\text{z} = \dfrac{x}{3} \quad \color{#F00}{\text{--- (1)}}\\\\ &\text{x + y + z = 7700 } \quad \color{#F00}{\text{(∵ the total amount is Rs. 7700)}} \\\\ &\Rightarrow x +\dfrac{x}{2}+\dfrac{x}{3} = 7700 \quad \color{#F00}{(∵ \text{substituted the values of y and z from from equation 1)}}\\\\ &\Rightarrow \dfrac{11x}{6} = 7700\\\\ &\Rightarrow \dfrac{x}{6} = 7000\\\\ &\Rightarrow x = 4200\\\\ &\text{z} = \dfrac{x}{3} = \dfrac{4200}{3} = 1400\end{align}$MF#%
i.e, Vikas gets Rs.4200 and Viraj gets Rs.1400
Share of Vikas is more than that of Viraj by (4200 - 1400) = 2800
--------------------------------------------------------------------------------------
Solution 2
--------------------------------------------------------------------------------------
If a certain sum of money is lent out in n parts in such a manner that equal sum of money is obtained at simple interest on each part where interest rates are R1, R2, ... , Rn respectively and time periods are T1, T2, ... , Tn respectively, then the ratio in which the sum will be divided in n parts can be given by
$MF#%\dfrac{1}{\text{R}_1\text{T}_1} : \dfrac{1}{\text{R}_2\text{T}_2} : \cdots \dfrac{1}{\text{R}_\text{n}\text{T}_\text{n}}$MF#%

Question 444.
What is the rate of interest at which Rs.150 becomes Rs. 220 in 10 years.
  1.    $MF#%\dfrac{11}{3} \%$MF#%
  2.    $MF#%\dfrac{14}{3} \%$MF#%
  3.    12%
  4.    14%
 Discuss Question
Answer: Option B. -> $MF#%\dfrac{14}{3} \%$MF#%

Answer : Option B

Explanation :

Simple Interest, SI = 220 - 150 = Rs.70
$MF#%\text{R = }\dfrac{100 \times \text{SI}}{\text{PT}} = \dfrac{100 \times 70}{150 \times 10} = \dfrac{2 \times 7}{3} = \dfrac{14}{3} \%$MF#%


Question 445.
A certain sum in invested for T years. It amounts to Rs. 400 at 10% per annum. But when invested at 4% per annum, it amounts to Rs. 200. Find the time (T).
  1.    45 years
  2.    60 years
  3.    40 years
  4.    50 Years
 Discuss Question
Answer: Option D. -> 50 Years

Answer : Option D

Explanation :

--------------------------------------------------------------------------------
Solution 1
--------------------------------------------------------------------------------
Let the principal = Rs.x
and time = y years
Principal,x amounts to Rs.400 at 10% per annum in y years
Simple Interest = (400-x)
$MF#%\begin{align}&\text{Simple Interest = }\dfrac{\text{PRT}}{100}\\\\ &\Rightarrow (400-x) = \dfrac{x \times 10 \times y}{100}\\\\ &\Rightarrow (400-x) = \dfrac{xy}{10} \quad \color{#F00}{\text{--- (equation 1)}}\end{align}$MF#%
Principal,x amounts to Rs.200 at 4% per annum in y years
Simple Interest = (200-x)
$MF#%\begin{align}&\text{Simple Interest = }\dfrac{\text{PRT}}{100}\\\\ &\Rightarrow (200-x) = \dfrac{x \times 4 \times y}{100}\\\\ &\Rightarrow (200-x) = \dfrac{xy}{25} \quad \color{#F00}{\text{--- (equation 2)}}\end{align}$MF#%
$MF#%\begin{align}&\color{#F00}{\dfrac{\text{(equation 1)}}{\text{(equation 2)}} \Rightarrow} \dfrac{400-x}{200-x} = \dfrac{\left(\dfrac{xy}{10}\right)}{\left(\dfrac{xy}{25}\right)}\\\\ &\Rightarrow \dfrac{400-x}{200-x} = \dfrac{25}{10}\\\\ &\Rightarrow \dfrac{400-x}{200-x} = \dfrac{5}{2}\\\\ &\Rightarrow 800 - 2x = 1000 - 5x\\\\ &\Rightarrow 200 = 3x\\\\ &\Rightarrow x = \dfrac{200}{3}\\\\ &\color{#F00}{\text{Substituting this value of x in Equation 1, we get,}}\left(400 - \dfrac{200}{3}\right) = \dfrac{\left(\dfrac{200}{3}\right)y}{10}\\\\ &\Rightarrow \left(400 - \dfrac{200}{3}\right) = \dfrac{20y}{3}\\\\ &\Rightarrow 1200 - 200 = 20y\\\\ &\Rightarrow 1000 = 20y\\\\ &y = \dfrac{1000}{20} = 50\text{ years}\end{align}$MF#%
--------------------------------------------------------------------------------
Solution 2
--------------------------------------------------------------------------------
If a certain sum of money P lent out for a certain time T amounts to P1 at R1% per annum and to P2 at R2% per annum, then
$MF#%\text{P = }\dfrac{\text{P}_2\text{R}_1 - \text{P}_1\text{R}_2}{\text{R}_1-\text{R}_2}$MF#%
$MF#%\text{T = }\dfrac{\text{P}_1 - \text{P}_2}{\text{P}_2\text{R}_1 - \text{P}_1\text{R}_2} \times 100 \text { years} $MF#%

Question 446.
A sum of money is lent at S.I. for 6 years. If the same amount is paid at 4% higher, Arun would have got Rs. 120 more. Find the principal
  1.    Rs. 200
  2.    Rs. 600
  3.    Rs. 400
  4.    Rs. 500
 Discuss Question
Answer: Option D. -> Rs. 500

Answer : Option D

Explanation :

This means, simple interest at 4% for that principal is Rs.120
$MF#%\text{P} = \dfrac{100 \times \text{SI}}{\text{RT}} = \dfrac{100 \times 120}{4 \times 6} = \dfrac{100 \times 30}{6} = 100 \times 5 = 500$MF#%


Question 447.
A four years NSC certificate was purchased for Rs. 500 with Rs. 1000 being the maturity value. Find the rate of S.I.
  1.    24%
  2.    22%
  3.    16%
  4.    25%
 Discuss Question
Answer: Option D. -> 25%

Answer : Option D

Explanation :

P = Rs. 500
SI = Rs.500
T = 4
R = ?
$MF#%\text{ R } = \dfrac{100 \times \text{SI}}{\text{PT}} = \dfrac{100 \times 500}{500 \times 4} = \dfrac{100}{4} = 25\%$MF#%


Question 448.
A sum of Rs. 725 is lent in the beginning of a year at a certain rate of interest. After 8 months, a sum of Rs. 362.50 more is lent but at the rate twice the former. At the end of the year, Rs. 33.50 is earned as interest from both the loans. What was the original rate of interest?
  1.    3.46%
  2.    None of these
  3.    4.5%
  4.    5%
 Discuss Question
Answer: Option A. -> 3.46%

Answer : Option A

Explanation :

Let the sum of Rs.725 is lent out at rate R% for 1 year
Then, at the end of 8 months, ad additional sum of 362.50 more is lent out at rate 2R% for remaining 4 months(1/3 year)
Total Simple Interest = 33.50
$MF#%\begin{align}&=> \dfrac{725 \times \text{R} \times1 }{100} + \dfrac{362.50 \times \text{2R} \times \dfrac{1}{3}}{100} = 33.50\\\\ &=> \dfrac{725 \times \text{R} \times1 }{100} + \dfrac{362.50 \times \text{2R} }{300} = 33.50\\\\ &=> \dfrac{725\text{R}}{100} + \dfrac{725\text{R} }{300} = 33.50\\\\ &=> 725\text{R}\left(\dfrac{1}{100} + \dfrac{1}{300}\right) = 33.50\\\\ &=> 725\text{R}\left(\dfrac{4}{300}\right) = 33.50\\\\ &=>725\text{R} \times 4 = 10050\\\\ &=>725\text{R} = 2512.5\\\\ &=>145\text{R} = 502.5\\\\ &=>\text{R} = \dfrac{502.5}{145} = 3.46\%\end{align}$MF#%


Question 449.
Arun borrowed a sum for 4 years on S.I. at 12%. The total interest paid was Rs. 360. Find the Principal.
  1.    Rs.700
  2.    Rs.650
  3.    Rs.800
  4.    Rs.750
 Discuss Question
Answer: Option D. -> Rs.750

Answer : Option D

Explanation :

$MF#%\text{P} = \dfrac{100 \times \text{SI}}{\text{RT}} = \dfrac{100 \times 360}{12 \times 4} = \dfrac{100 \times 30}{4}= 25 \times 30 = 750$MF#%


Question 450.
The simple interest on Rs. 1820 from March 9, 2003 to May 21, 2003 at 7 1⁄2% rate is
  1.    Rs. 27.30
  2.    Rs. 22.50
  3.    Rs. 28.80
  4.    Rs. 29
 Discuss Question
Answer: Option A. -> Rs. 27.30

Answer : Option A

Explanation :

$MF#%\text{Time, T = (22 + 30 + 21)days = 73 days = }\dfrac{73}{365}\text{ year} = \dfrac{1}{5}\text{ year}\\\\ \text{Rate, R = }7\dfrac{1}{2}\% = \dfrac{15}{2}\%\\\\ \text{SI = }\dfrac{\text{PRT}}{100} = \dfrac{1820 \times \dfrac{15}{2} \times \dfrac{1}{5}}{100} = \dfrac{1820 \times \dfrac{3}{2} }{100} = \dfrac{910 \times 3}{100} = \dfrac{2730}{100}=27.30$MF#%


Share this page with your friends!

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024