Principal = Rs. `((100 xx 5400)/(12 xx 3))` = Rs. 15000
Let rate = R% and time = R years. Then
`((1200 xx R xx R)/(100)) = 432 hArr 12R^2 = 432 hArr R^2 = 36 hArr R = 6.`
Time = 2 years 4 months = `2 1/3` years = `7/2` years
Rate = `((100 xx 252 xx 3)/(1600 xx 7))`% = `6 3/4`
S.I. = Rs. (15500 - 12500) Rs. 3000
Rate = `((100 xx 3000)/(12500 xx 4))`% = 6%.
Time = `((100 xx 81)/(450 xx 4.5))` years = 4 years
Gain in 2 yrs. = Rs `[(5000 xx 25/4 xx 2/100) - ((5000 xx 4 xx 2)/(100))]` = Rs. (625 - 400) = Rs. 225
`:.` Gain 1 year = Rs`(225/2)` = Rs. 112.50
Time = (22 + 30 + 21 ) days = 73 days = `1/5` year
`:.` S.I. = Rs. `(1820 xx 15/2 xx 1/5 xx 1/100)` = Rs. 27.30
Time = 9 months = `3/4` years.
`:.` S.I. = Rs. `(16800 xx 25/4 xx 3/4 xx 1/100)` = Rs. 787.50
Time = 2 yrs 3 mths = `2 1/4`yrs = `9/4` yrs.
`:.` S.I. = Rs. `(4800 xx 17/2 xx 9/4 xx 1/100)` = Rs. 918.
Let the sum lent at 8% be Rs. `x` and that at 6% be Rs. (1550 - `x`).
`:.` `[(x xx 8 xx 1)/(100)] + [((1550 - x) xx 6 xx 1)/(100)]` = 106
`hArr 8x + 9300 - 6x = 10600`
`hArr 2x = 1300 hArr x` = 650
`:.` Money lent at 8% = Rs. 650
Money lent at 6% = Rs. (1550 - 650) = Rs. 900.