Let the sum be Rs. `x` , Then, S.I. = Rs. (504 -`x`)
`:.` `((x xx 5 xx 4)/(100)) = 504 - x`
`hArr 20x = 50400 - 100`
`hArr 120x = 50400`
`hArr x = 420
Now , P = Rs. 420, R = 10% , T = `5/2` years
S.I. = Rs. `((420 xx 10)/(100) xx 5/2)` = Rs. 105.
`:.` Amount = Rs. (420 + 105) = Rs. 525
S.I. = Rs. 202.50 R = 4.5% , T = 1 year.
principal = Rs. `((100 xx 202.50)/(4.5 xx 1))` = Rs. 4500
Now , P = 4500, R = 5% , T = 1 year
S.I. = Rs. `((4500 xx 5 xx 1)/(100))` = Rs. 225
`:.` Difference in interest = Rs. (225 - 202.50) = Rs. 22.50.
S.I. = Rs. 840, R = 5%, T = 8 years
principal = Rs.`((100 xx 840)/(5 xx 8))` = Rs. 2100
Now , P = 2100, S.I. = Rs. 840, T = 5 years
`:.` Rate = `((100 xx 840)/(2100 xx 5))`% = 8%
P = Rs. 64, S.I. = Rs.(83.20 - 64) = Rs. 19.20 , T = 2 years.
So, rate = `((100 xx 19.20)/(64 xx 2))` % = 15 %.
New P = 86, R = 15 %, T = 4 years
`:.` S.I. = Rs`((86 xx 15 xx 4)/(100))` = Rs. 51.60
P = Rs. 800, R = `4 1/2`% = `9/2`% T = 3 years. Then
S.I. = Rs. `(800 xx 9/2 xx 3/100)` = Rs. 108.
New, P = Rs. 150, S.I. = Rs. 108, R = 8%
`:.` Time = `((100 xx 108)/(150 xx 8))` years = 9 years .
We need o know the S.I. , principal and time to find the rae . Since the principal is no given , so data in inadequate.
S.I. = Rs. (956 - 800) = Rs. 156
Rate = `((100 xx 156)/(800 xx 3))`% = `6 1/2`%
New rae = `(6 1/2 + 4)% = 10 1/2`%
New S.I. = Rs. `(800 xx 21/2 xx 3/100)` = Rs. 252
`:.` New amount = Rs. (800 + 252) = Rs. 1025.
Sum = `((100 xx S.I.)/(R xx T))`
= Rs. ` ((100 xx x)/(x xx x)`
=Rs `(100/x)`
Principal = Rs `((100 xx 4016.25)/(9 xx 5))`
=Rs. ` (401625/45)`
=Rs 8925
Let the present worth be Rs. `x` Then , S.I. = Rs. (132 - `x`)
`:.` `((x xx 5 xx 2)/(100)) = 132 - x `
`hArr 10x = 13200 - 100x`
`hArr 110x = 13200 `
`hArr x = 120`