S.I. for `1 1/2` years = Rs. (1067.20 - 1012) = Rs. 55.20
S.I. for `2 1/2` years = Rs. `(55.20 xx 2/3 xx 5/2)` = Rs. 92
`:.` principal = Rs. (1012 - 92) = Rs. 920
Hence , rate = `((100 xx 92 xx 2)/(920 xx 5))` = 4%
Let sum = `x` , Then , S.I. = `x`
`:.` Time = `((100 xx S.I.)/(P xx R))`
=`((100 xx x)/(x xx 12))` years = `8 1/3` years = 8 years 4 months.
S.I. for 3 years = Rs. (12005 - 9800) = Rs. 2205
S.I. for 5 years = Rs. `(2205/3 xx 5)` = Rs. 3675.
`:.` principal = Rs. (9800 - 3675) = Rs. 6125.
Hence ,rate = `((100 xx 3675)/(6125 xx 5))`% = 12%
S.I. for 5 years = Rs. (1020 - 720) = Rs. 300.
S.I. for 2 years = Rs. `(300/5 xx 2)` = Rs. 120
`:.` principal = Rs. (720 - 120) = Rs. 600.
S.I. for 1 year = Rs. ( 854 - 815) = Rs. 39
S.I. for 3 years = Rs. (39 x 3) = Rs. 117
`:.` principal = Rs. (815 - 117) = 698.
Let the sum be Rs. 100 , Then
S.I. for first 6 months = Rs.`((100 xx 10 xx 1)/(100 xx 2))` = Rs . 5.
S.I. for last 6 months = Rs. `((105 xx 10 xx 1)/(100 xx 2))` = Rs. 5.25
So, amount at the end of 1 year = Rs. (100 + 5 + 5.25) = Rs. 110.25
`:.` Effective rate = (110.25 - 100) = 10.25%
S.I. = Rs. `(10 xx 3/100 xx 4)` = Rs. 1.20.
Let the sum be Rs. `x` Now , S.I. = Rs. 600, T = 10 years.
Rate = `((100 xx 600)/(x xx 10))% = (6000/x)`%
S.I. for first 5 years = Rs `((x xx 5 xx 6000)/(x xx 100))` = Rs. 300
S.I. for last 5 years = Rs. `(3x xx 5 xx (6000)/(x xx 100))` = Rs. 900
`:.` Total interest = Rs. (900 + 300) = Rs. 1200
Let the sum be Rs. `x` , Then ,
`((x xx 6 xx 3)/(100)) + ((x xx 9 xx 5)/(100)) + ((x xx 13 xx 3)/(100))` = 8160
`hArr 18x + 45x + 39x = (8160 xx 100)`
`hArr 102x = 816000`
`hArr x = 8000`
Let the principal be P and rate of interest be R%
`:.` Required ratio =` [((P xx R xx 6)/(100))/((P xx R xx 9)/(100))]`
= `(6PR)/(9PR) = 6/9` = 2 : 3