Amount to be paid = Rs. `(100 + (200 xx 5 xx 1)/(100) + (100 xx 5 xx 1)/(100))` = Rs. 115.
Rs. 10 + S.I. on Rs. 10 for 11 monhs
= Rs. 11 + S.I. on Re. 1 for (1 + 2 + 3 + 4 + ................+ 10) months
`rArr ` Rs. 10 + S.I. of Re. 1 for 110 months = Rs. 11 + S.I. on Re. 1 for 55 months
`rArr` S.I. on Re. 1 for 55 months = Re. 1
`:.`Rate = `((100 xx 12)/(1 xx 55))`% = `21 9/11`%
Let the annual instalment be Rs. `x` Then ,
`[ x + ((x xx 3 xx 5)/(100))] + [x + ((x xx 2 xx 5)/(100))] + [x + ((x xx 1 xx 5)/(100))] + x = 6450`
`hArr (23x)/(20) + (22x)/(20) + (21x)/(20) + x = 6450`
`hArr 86x = 6450 xx 20`
`hArr x = 1500`
Let the capital be Rs. `x` , Then ,
`((x xx 8 xx 1)/(100) - (x xx 31/4 xx 1/100)` = 6150
`hArr 32x - 31x = 6150 xx 4`
`hArr x = 24600`
Let the sum be Rs. `x` , Then ,
`(x xx 25/2 xx 1/100) - ((x xx 10 xx 1)/(100))` = 1250
`hArr 25x - 20x = 250000`
`hArr 5x = 250000`
`hArr x = 50000`
Let the sum be Rs. `x` and original rate be R% . Then ,
`(x xx (R + 3) xx 2)/(100) - (x xx R xx 2)/(100) ` = 72
`hArr 2Rx + 6x - 2Rx = 7200`
`hArr 6x = 7200`
`hArr x = 1200`
Let the savings be X and Y and the rates of simple interest be `5x` and `4x` respectively .
Then , `X xx 5x xx 1/2 xx 1/100 = Y xx 4x xx 1/2 xx 1/100`
or `X/Y = 4/5` , i.e.,
X : Y = 4 : 5
S.I. = Rs. `(2600 xx 20/3 xx 1/100 xx T) `
=Rs. `(520/3 xx T)`
which is an exact number of rupees when T = 3
Let the second amount be Rs. `x`, Then ,
`((12000 xx 10 xx 1)/(100)) + ((x xx 20 xx 1)/(100))` = `((( 12000 + x) xx 14 xx 1)/(100))`
`hArr 12000 + 20x = 168000 + 14x`
`hArr 6x = 48000`
`hArr x = 8000`
`:.` Total investment = Rs. (12000 + 8000) = Rs. 20000
`((1500 xx R_1 xx 3)/(100)) - ((1500 xx R_2 xx 3)/(100))` = 13.50
`hArr 4500(R_1 - R_2) = 1350`
`hArr R_1 - R_2 = 1350/4500`
`hArr R_1 - R_2 `= 0.3%.