Let the parts be `x, y and (2379 - (x + y)]`
`x + (x xx 2 xx 5/100) = y + (y xx 3 xx 5/100) = z + (z xx 4 xx 5/100)`
`rArr (11x)/(10) = (23y)/(20) = (6z)/(5) = k`
`rArr x = (10k)/(11), y = (20k)/(23), z = (5k)/(6)`
But `x + y + z` = 2379
`rArr (10k)/(11) + (20k)/(23) + (5k)/(6) = 2379`
`rArr 1380k + 1320k + 1265k = 2379 xx 11 xx 23 xx 6`
`rArr k = (2379 xx 11 xx 23 xx 6)/(3965) = (3 xx 11 xx 23 xx 6)/(5)`
`:.` ` x = (10/11 xx (3 xx 11 xx 23 xx 6)/(5))` = 828.
Hence , the first part is Rs. 828 .
Let the part be `x, y and [2600 - (x + y)]`. Then
`(x xx 4 xx 1)/(100) = (y xx 6 xx 1)/(100) = ([2600 - (x + y)] xx 8 xx 1)/(100)`
`:.` `y/x = 4/6 = 2/3 or y = 2/3 y`
So ` (x xx 4 xx 1)/(100) = ((2600 - 5/3 x) xx 8)/(100)`
`hArr 4x = ((7800 - 5x) xx 8)/(3)`
`hArr 52x = (7800 xx 8)`
`hArr x = ((7800 xx 8)/(52)`
`hArr x = 1200`
`:.` Money invested at 4% = Rs. 1200.
David intvested certain amount in three different schems A, B and C with the rate of interest 10% p.a. respectively.If the total interest accrued in one year was Rs. 3200 and the amount invested in scheme C was 150% of the amount invested in Scheme A and 240% of the amount invesed in Scheme B , what was the amount invested in Scheme B ?
Let `x, y and z` be the amounts invested in schemes A, B and C respecivelt, Then ,
`((x xx 10 xx 1)/(100)) + ((y xx 12 xx 1)/(100)) + ((z xx 15 xx 1)/(100)) = 3200`
`hArr 10x + 12y + 15z = 320000`...................................................(i)
Now , z = 240% of y = `12/5 y` ......................................................(ii)
And, z = 150% of `x = 3/2 x` `rArr x = 2/3 z = (2/3 xx 12/5)y = 8/5 y` .............................(iii)
From (i), (ii) and (iii), we have .
16y + 12y + 36y = 320000
`hArr 64y = 320000 hArr y = 5000`
`:.` Sum invested in scheme B = Rs 5000.
Let the sum invested at 9% be Rs. `x` and that invested a 11% be Rs.` 100000- x)`
Then , `((x xx 9 xx 1)/(100) + [((100000 - x) xx 11 xx 1)/(100)]` = `(100000 xx 39/4 xx 1/100)`
`hArr (9x + 1100000 - 11x)/(100) = 39000/4` = 9750
`hArr 2x = (1100000 - 975000) = 125000 hArr x = 62500`
`:.` Sum invested at 9% = Rs. 62500
Sum invesed at 11 % = Rs. (100000 - 62500) = Rs. 37500
Let he required rate be R , Then ,
`((2000 xx 8 xx 1)/(100)) + (4000 xx 15/2 xx 1/100) + (1400 xx 17/2 xx 1/100)` + `(2600 xx R xx 1/100)= (813/10000 xx10000)`
`hArr 160 + 300 + 119 + 26R = 813`
`hArr R = 9`
Let the sum lent at 5% be Rs. `x` and that lent at 8% be Rs. (1550 - `x`). Then
`((x xx 5 xx 3)/(100)) + [((1550 - x) xx 8 xx 3)/(100)] = 300`
`hArr 15x - 24x + (1550 xx 24) = 30000`
`hArr 9x = 7200`
`hArr x = 800`
`:.` Required ratio = 800 : 750 = 16 : 15
Let the sum lent at 10% be Rs. `x` and that lent at 9% be Rs. (2600 - `x`),
Then `((x xx 10 xx 5)/(100)) = ((2600 - x) xx 9 xx 6)/(100)`
`hArr 50x = (2600 xx 54) - 54x rArr x = ((2600 xx 54)/(104))` = 1350
`:.` Sum lent at 10% = Rs. 1350.
Let the sum invested in scheme A be Rs. `x` and that in Scheme B be Rs. (13900 - `x`).
Then,`((x xx 14 xx 2)/(100)) + [((13900 - x) xx 11 xx 2)/(100)] = 3508`
`hArr 28x - 22x = 350800 - (13900 xx 22)`
`hArr 6x = 45000`
`hArr x = 7500`
So, sum invested in Scheme B = Rs. (13900 - 7500) = Rs. 6400
Let the sum be Rs. `x` , rate be R% p.a. and time be T years.
Then ,`[(x xx (R + 2) xx )/(100)] - ((x xx R xx T)/(100)) = 108` `hArr 2xT = 10800`................................(i)
And ,` [(x xx R xx (T + 2))/(100)] - ((x xx R xx T)/(100)) = 180 ` `hArr 2xT = 18000.`.................................(ii)
Clearly , from (i) and (ii) , we cannot find the value of `x`
So, he data is inadequate.
Money paid in cash = Rs. 1000.
Balance payment = Rs. (20000 - 1000) = Rs. 19000