Let the sum be Rs x , Rate = R % p.a, Time = R years
S. I = Rs 25x/16
R = 100 × 25x/16 × 1/x ×1/R
=> R2 = 2500/16
=> R = 50/4 = 25/2
Hence Rate = 12 ½ % p.a
Let the sum be Rs x.
Then
(x × 15/2 × 1/100 × 15/12) “ (x × 25/2 × 1/100 × 8/12) = 65/2
=> 3x/32 “ x/12 = 65/2
=> 9x “ 8x = 3120
=> X = 3120
Then, Sum = Rs 3120
Let the sum be Rs x.
Then S.I = Rs 3x/4, Time = 25/2 Years
Therefore, Rate = (100 × 3x/4 × 1/x × 2/25) % p.a
= 6 % p.a
S. I for 10 Years = Rs (1000 × 5/100 × 10) = Rs 500
Principle after 10 Years becomes = Rs (1000 + 500)
= Rs 1500
S. I on it = Rs (2000 - 1500) = Rs 500
Time = (50000/7500) Years = 6 2/3 Years
Total Time = (10 + 6 2/3) Years = 16 2/3 Years
After t years. Let P = Rs 4x and amount = Rs 5x
P + S.I for t years = Rs 5x ---(i)
P = [P + S.I for (t + 3) Years] = 5 : 7 = 1 : 7/5
= 4x: (7/5 — 4x) = 4x : 28x/5
Therefore, P + S. I for (t+3) Years = Rs 28x /5---- (ii)
On subtracting, we get
S. I for 3 Years = Rs (28x/5 “ 5x)
= Rs 3x/5
S.I on Rs 4x for 3 Years = Rs 3x /5
Therefore, Rate =