C.I. = [4000 * (1 + 10/100)2 - 4000] = (4000 * 11/10 * 11/10 - 4000) = Rs. 840. Sum = (420 * 100)/(3 * 8) = Rs. 1750
Let the sum be Rs. P. Then, [P(1 + 10/100)2 - p] = 525 P[(11/10)2 - 1] = 525 P = (525 * 100) / 21 = 2500 Sum = Rs. 2500 So, S.I. = (2500 * 5 * 4)/100 = Rs. 500
P(1 + R/100)5 = 2P => (1 + R/100)5 = 2 Let P(1 + R/100)n = 8P => (1 + R/100)n = 8 = 23 = {(1 + R/100)5}3 => (1 + R/100)n = (1 + R/100)15 => n = 15
Required time = 15 years.
Principal = (P.W. of Rs. 882 due 1 year hence) + (P.W. of Rs. 882 due 2 years hence) = [882/(1 + 5/100) + 882/(1 + 5/100)2] = (882 * 20)/21 + (882 * 400)/441 = Rs. 1640.
P(1 + 20/100)n > 2P or (6/5)n > 2 Now, (6/5 * 6/5 * 6/5 * 6/5) > 2. So, n = 4 years.
Let each installment be Rs. x. Then, x/(1 + 5/100) + x/(1 + 5/100)2 = 1025
820x + 1025 * 441x = 551.25So, value of each installment = Rs. 551.25
[15000 * (1 + R/100)2 - 15000] - (15000 * R * 2)/100 = 96 15000[(1 + R/100)2 - 1 - 2R/100] = 96 15000[(100 + R)2 - 10000 - 200R]/10000 = 96 R2 = (96 * 2)/3 = 64 => R = 8 Rate = 8%
S.I = Rs(8000 × 5/100 ×3) = Rs 1200
C.I = Rs [8000 × (1+5/100)3- 8000
= Rs [(8000 × 21/20×21/20×21/20)-8000]
=Rs (9261-8000)=Rs 1261
(c.I)-(S.I) = Rs (1261 “ 1200) = Rs61.
P = Rs 16000, R = (10/2)%
Per half-year , t= 4 half-years
Therefore Amount = Rs [16000 × (1+5/100)4]
= Rs (16000 × 21/20 × 21/20 × 21/20 × 21/20)
= Rs 1448.10 ~ Rs 19448