Sail E0 Webinar

12th Grade > Physics

CALCULUS MCQs

Total Questions : 29 | Page 1 of 3 pages
Question 1. Find the integral of the given function w.r.t - x
y=e(5x+10)
  1.    e(5x+10)5+c
  2.    e(5x+10)+c
  3.    e(5x+10)5x+10+c
  4.    1e(5x+10)+c
 Discuss Question
Answer: Option A. -> e(5x+10)5+c
:
A
I=e(5x+10)dx=eudu5
= 15eu+c
= 15e(5x+10)+c
Question 2. Find dydx if y=ex sinx
  1.    excosx
  2.    ex+cosx
  3.    ex(cosx+sinx)
  4.    none of these
 Discuss Question
Answer: Option C. -> ex(cosx+sinx)
:
C
y=exsinx.
So dydx=ddx(exsinx)=exddx(sinx)+sinxddx(ex)
=excosx+exsinx=ex(cosx+sinx).
Question 3. Can I differentiate any other function to get 3x2?
  1.    yes
  2.    No
  3.    ex(cosx+sinx)
  4.    none of these
 Discuss Question
Answer: Option A. -> yes
:
A
Yes
Question 4. Find the area bounded by the curve y=ex, the X-axis and the Y-axis
  1.    34 unit2
  2.    12 unit2
  3.    1 unit2
  4.    None of these
 Discuss Question
Answer: Option C. -> 1 unit2
:
C
Find The Area Bounded By The Curve Y=e−x, The X-axis And T...
The required area is
0exdx
= ex|0
= 1e[1e]
= -0 + 1
= 1
Question 5. Integrate the following w.r.t x:12x+3
  1.    ln |2x + 3| + c
  2.    ln|2x+3|2+c
  3.    ln(2x+3)2x+3+c
  4.    None of these
 Discuss Question
Answer: Option B. -> ln|2x+3|2+c
:
B
Let u=2x+3
dudx=2
dx=du2
I=ydx=dx2x+3=1u×du2
= 12duu
= 12lnu+c
= 12ln|2x+3|+c
Question 6. Evaluate 1+y2.2ydy
  1.    23(1+y2)32+c
  2.    32(y3)+c
  3.    23(1+y2)+c
  4.    None of these
 Discuss Question
Answer: Option A. -> 23(1+y2)32+c
:
A
Let I=1+y2.2ydy
Let u=1+y2, then du=2ydy
I=u1/2du=u(1/2)+1(1/2)+1Integrate, using rule no. 3 with n=12
= 23u3/2+C
Simpler form= 23(1+y2)3/2+c (Replace u by 1+y2)
Question 7. If y=x5, then dydx=?
  1.    5x4
  2.    x5
  3.    x66
  4.    none of these 
 Discuss Question
Answer: Option A. -> 5x4
:
A
Given y=x5
Differentiating both sides w.r.t. 'x', Using dxndx=n.xn1
dydx=ddx[x5]=5x51=5x4
Question 8. If y=x2+5x32+2x, then dydx= ?
  1.    2x+152√x−2x2
  2.    2x+103x+2lnx
  3.    2x+15√x+2lnx
  4.    none of these 
 Discuss Question
Answer: Option D. -> none of these 
:
D
Differentiating both sides w.r.t. 'x'
dydx=ddx[x2+5x32+2x]
Using the linearity property of the differentiation, we get = ddx[x2]+ddx[5x32]+ddx[2x]
Taking constants out, = ddx[x2]+5d[x32]dx+2ddx[1x]
=2x+5.32x12+2.(1)x2=2x+152x122x2
Question 9. π/2π/2cos xdx
  1.    1 unit
  2.    2 units
  3.    0 unit
  4.    None of these
 Discuss Question
Answer: Option B. -> 2 units
:
B
I=π/2π/2cosxdx=sinx|π/2π/2=sinπ2sin(π2)=1+1=2baf(x)dx=I(x)ba=I(b)I(a)
Question 10. If y=ex  find dydx
  1.    ex
  2.    ex
  3.    xex−1
  4.    none of these
 Discuss Question
Answer: Option A. -> ex
:
A
dexdx=ex
dydx for some common functions
ydydxydydxxnnxn1secxsecxtanxsinxcosxcosecxcosecxcotxcosxsinxlnx1xtanxsec2xexexcotxcosec2x

Latest Videos

Latest Test Papers