# Quiz

#### TopicsQuantitative AptitudeSurds & Indices

Question:

1. $$\frac{\sqrt{5}+ x}{\sqrt{5}- x}$$  = 1 then x =?

Options:
 A. 0 B. 1 C. - 1 D. none of these Ankita dubey

Answer is x=0 and x=root 5
Date : 2016-07-01 04:27:24

Earn Reward Points by submitting Detailed Explaination for this Question

### More Questions on This Topic :

Question 1.

1. If 4x =$$\sqrt{2^{3y}}$$, then

Options:
1.    $$x=\frac{3}{4}y$$
2.    $$y=\frac{3}{4}x$$
3.    $$x=\frac{1}{3}y$$
4.    $$y=\frac{1}{3}x$$
Question 2.

1. If 2x = 8y+1 and 9y = 3x-9, then y equals

Options:
1.    3
2.    6
3.    9
4.    12
Question 3.

$$\frac{\sqrt{a^{5}}\times\sqrt{b^{2}}}{\sqrt{b^{- 2}}\times\sqrt{a^{10}}}$$  = ?

Options:
1.    a
2.    b
3.    ab
4.    none of these
Question 4.

$$[(\sqrt{6}+ \sqrt{3})(\sqrt{6}- \sqrt{3})]^{\frac{3}{2}}$$  is nearly equal to

Options:
1.    $$2\sqrt{3}$$
2.    $$3\sqrt{3}$$
3.    $$2\sqrt{18}$$
4.    none of these
Question 5.

1. If $$\frac{a}{b}=\frac{c}{d}=\frac{3}{5}$$  , then  $$[\frac{a^{4}+c^{4}}{b^{4}+d^{4}}]^{\frac{1}{4}}$$  =?

Options:
1.    $$\frac{5}{3}$$
2.    $$\frac{3}{5}$$
3.    $$\frac{7}{3}$$
4.    $$\frac{3}{7}$$
1. If n < (1+$$\sqrt{2}$$)² < n + 1, find the value f n assuming that n is an integer.