Quiz

Question:

{(481 + 426)2 - 4 x 481 x 426} = ?

Options:
A.3025
B.4200
C.3060
D.3210
Answer: Option A

(a + b)2 = a2 + 2ab + b2

 

(a - b)2 = a2 - 2ab + b2

 

Here, the given statement is like (a + b)2 - 4ab where a= 481 and b = 426

(a + b)2 - 4ab = (a2 + 2ab + b2) - 4ab = a2 - 2ab + b2 = (a - b)2

Hence {(481 + 426)2 - 4 x 481 x 426} = (481 - 426)2 = 552 = 3025

1 Comments

JANHAVI

(*_*)
Date : 2017-11-10 21:21:16

Submit Answer & Explaination

Earn Reward Points by submitting Detailed Explaination for this Question

More Questions on This Topic :

Question 1.

What is the largest 4 digit number exactly divisible by 88?

Options:
  1.    9944
  2.    9999
  3.    9988
  4.    9900
Answer: Option A

 

Largest 4 digit number = 9999

9999 ÷ 88 = 113, remainder = 55

Hence largest 4 digit number exactly divisible by 88 = 9999 - 55 = 9944

Question 2.

What will be remainder when (6767 + 67) is divided by 68 ?

Options:
  1.    1
  2.    63
  3.    66
  4.    67
Answer: Option C

(xn + 1) will be divisible by (x + 1) only when n is odd.

(6767 + 1) will be divisible by (67 + 1)

(6767 + 1) + 66, when divided by 68 will give 66 as remainder.

Question 3.

107 x 107 + 93 x 93 = ?

Options:
  1.    19578
  2.    19418
  3.    20098
  4.    21908
  5.    None of these
Answer: Option C

107 x 107 + 93 x 93 = (107)2 + (93)2

= (100 + 7)2 + (100 - 7)2

= 2 x [(100)2 + 72]    [Ref: (a + b)2 + (a - b)2 = 2(a2 + b2)]

= 20098

Question 4.

(64 - 12)2 + 4 x 64 x 12 = ?

Options:
  1.    5246
  2.    4406
  3.    5126
  4.    5776
Answer: Option D

(a - b)2 = a2 - 2ab + b2

 

Here, the given statement is like (a - b)2 + 4ab where a= 64 and b = 12

(a - b)2 + 4ab = (a2 - 2ab + b2) + 4ab = a2 + 2ab + b2 = (a + b)2

Hence (64 - 12)2 + 4 x 64 x 12 = (64 + 12)2 = 762 = 5776

Question 5.

If (232 + 1) is completely divisible by a whole number, which of the following numbers is completely divisible by this number?

Options:
  1.    (296 + 1)
  2.    (7 x 223 )
  3.    (216 - 1)
  4.    (216 + 1)
Answer: Option A

Let 232 = x. Then (232 + 1) = (x + 1)

Assume that (x + 1) is completely divisible by a whole number, N

(296 + 1) = {(232)3 + 1} = (x3 + 1) = (x + 1)(x2 - x + 1)

if (x + 1) is completely divisible by N, (x + 1)(x2 - x + 1) will also be divisible by N

Hence (296 + 1) is completely divisible N

Question 6.

All prime numbers are odd numbers

Options:
  1.    True
  2.    . False
Answer: Option B

2 is even prime number