Lakshya Education MCQs

Question:

Which of the following figures satisfy the following property?

-Has two pairs of congruent adjacent sides.

Options:

: We know that, a kite has two pairs of congruent adjacent sides and we can observe that figure R resembles a kite.

Earn Reward Points by submitting Detailed Explaination for this Question

More Questions on This Topic :

Question 1.

A rhombus can be constructed uniquely, if both diagonals are given.

: True
A rhombus can be constructed uniquely, if both diagonals are given.
Question 2.

A polygon is a simple closed curve made up of only ___.

: Line segments.

A closed curve made up of only line segments is called a polygon.
Question 3.

In the figure, BEST is a rhombus, then the value of y - x is

a) 40

b) 50

c) 20

d) 10

: Given: BEST is a rhombus, so,
TSBE
and BS is a transversal.
SBE=TSB=40 [alternate interior anges]
Also,y=90 [diagonals of a rhombus bisect at 90]

In ΔTSO,
STO+TSO+SOT=180 [Angle sum property of a triangle]
x+40+90=180x=1809040=50
yx=9050=40
Question 4.

Two sticks each of length 7 cm are crossing each other such that they bisect each other at right angles. What shape is formed by joining their end points? Give reason.

: Sticks can be treated as the diagonals of a quadrilateral.
Now, since the diagonals (sticks) are bisecting each other each other at right angles, therefore the shape formed by joining their end points can be a rhombus or a square.

Both the sticks are of the same length. This means that the diagonals of the quadrilateral formed are equal and also bisect each other perpendicularly.
The shape formed is that of a square.
Question 5.

The sum of angles of a concave quadrilateral is

a) More than 360

b) Less than 360

c) Equal to 360

d) Twice of 360

: We know that the sum of interior angles of any polygon (convex or concave) having n sides is (n2)×180.
The sum of angles of a concave quadrilateral is (42)×180=360.
Question 6.

In the following figure, FDBCAE and ACED. Find the value of x.

:
In ΔABC,
ABC+BCA+CAB=180 [Angle sum property of triangle]
64+BCA+52=180
BCA=1806452=64

FAE=BCA [ Alternate angles; AEBC, AC is the transversal]
FAE=64

Now, FAE+x=180 [Adjacent angles in a parallelogram are supplementary]
x=18064x=116