Answer: Option C External radius = 6 cm
Internal radius = (6 - 0.25) = 5.75 cm
Volume of material in hollow cylinder :
$$\eqalign{
& = \left[ {\frac{{22}}{7} \times \left\{ {{{\left( 6 \right)}^2} - {{\left( {5.75} \right)}^2}} \right\} \times 15} \right]{\text{c}}{{\text{m}}^3} \cr
& = \left( {\frac{{22}}{7} \times 11.75 \times 0.25 \times 15} \right){\text{c}}{{\text{m}}^3} \cr
& = \left( {\frac{{22}}{7} \times \frac{{1175}}{{100}} \times \frac{{25}}{{100}} \times 15} \right){\text{c}}{{\text{m}}^3} \cr
& = \left( {\frac{{11 \times 705}}{{56}}} \right){\text{c}}{{\text{m}}^3} \cr} $$
Let the length of solid cylinder be h
Then,
$$\eqalign{
& \frac{{22}}{7} \times 1 \times 1 \times h = \left( {\frac{{11 \times 705}}{{56}}} \right) \cr
& \Rightarrow h = \left( {\frac{{11 \times 705}}{{56}} \times \frac{7}{{22}}} \right) \cr
& \Rightarrow h = 44.0625\,{\text{cm}} \cr} $$
Was this answer helpful ?
Submit Comment/FeedBack