The remainder when 30 + 31 + 32 + 33 + . . . . . . . + 3200 is divided by 13 is:
Options:
A .  0
B .  4
C .  3
D .  12
E .  None of these
Answer: Option A $$\eqalign{ & {\text{The}}\,{\text{given}}\,{\text{expression}}\,{\text{is}}\,{\text{in}}\,{\text{GP}}\,{\text{series}} \cr & S = {3^0} + {3^1} + {3^2} + {3^3} + ........ + {3^{200}} \cr & S = {\frac{{ {{3^0} \times \left( {{3^{201}} - 1} \right)} }}{{ {3 - 1} }}} \cr & S = \frac{{ {{3^{201}} - 1} }}{2} \cr & S = \frac{{ {{{\left( {{3^3}} \right)}^{67}} - {1^3}} }}{2} \cr & S = \frac{{ {{{27}^{67}} - {1^3}} }}{2} \cr} $$ Since, (An - Bn) is divisible by (A - B), So, (2767 - 13) is divisible by (27 - 1) = 26 Hence, Expression is also divisible by 13 as it is divisible by 26 Thus given expression is divisible by 13 so the remainder will be 0
Submit Comment/FeedBack