The ratio of the surface area of a sphere and the curved surface area of the cylinder circumscribing the sphere is :
Options:
A .  1 : 1
B .  1 : 2
C .  2 : 1
D .  2 : 3
Answer: Option A Let the radius of the sphere be r Then, radius of the cylinder = r Height of the cylinder = 2r Surface area of sphere = $$4\pi {{\text{r}}^2}$$ Surface area of the cylinder = $$2\pi {\text{r}}(2r) = 4\pi {{\text{r}}^2}$$ ∴ Required ratio : = $$4\pi {{\text{r}}^2}$$ : $$4\pi {{\text{r}}^2}$$ = 1 : 1
Submit Comment/FeedBack