The lowest temperature in the night in a city is one third more than $$\frac{1}{2}$$ the highest during the day. Sum of the lowest temperature and the highest temperature is 100 degrees. Then what is the lowest temperature?
Options:
A .  30 degrees
B .  40 degrees
C .  36 degrees
D .  None of these
Answer: Option B Let the highest temperature be x degrees Then, lowest temperature $$\eqalign{ & {\text{ = }}\left[ {\left( {1 + \frac{1}{3}} \right)\frac{x}{2}} \right]{\text{ degrees }} \cr & = \left( {\frac{4}{3} \times \frac{x}{2}} \right){\text{ degrees}} \cr & = \frac{{2x}}{3}{\text{ degrees}} \cr & \therefore x + \frac{{2x}}{3} = 100 \cr & \Leftrightarrow \frac{{5x}}{3} = 100 \cr & \Leftrightarrow x = \frac{{100 \times 3}}{5} \cr & \,\,\,\,\,\,\,\,\,\,\,\, = 60 \cr & {\text{So, lowest temperature}} \cr & {\text{ = }}\left( {\frac{2}{3} \times 60} \right){\text{degrees}} \cr & {\text{ = 40 degrees}} \cr} $$
Submit Comment/FeedBack