Answer : Option A
Explanation :
$MF#%\begin{align}
&\text{Diagonal, d = 7}\dfrac{1}{2}\text{ feet } = \dfrac{15}{2}\text{ feet}\\
&\text{Breadth, b = 4}\dfrac{1}{2}\text{ feet} = \dfrac{9}{2}\text{ feet}\\\\\\\\
&\text{In the right-angled triangle PQR,}\\
&l^2 = \left(\dfrac{15}{2}\right)^2 - \left(\dfrac{9}{2}\right)^2 \\\\
&= \dfrac{225}{4} - \dfrac{81}{4} = \dfrac{144}{4}\\\\
&l = \sqrt{\dfrac{144}{4}} = \dfrac{12}{2}\text{ feet = 6 feet}\\\\\\\\\\
&\text{Area = lb = }6 \times \dfrac{9}{2} = 27 \text{ feet}^2
\end{align} $MF#%
Submit Comment/FeedBack