The areas of a square and a rectangle are equal. The length of the rectangle is greater than the length of any side of the square by 5 cm and the breadth is less by 3 cm. Find the perimeter of the rectangle ?
Options:
A .  17 cm
B .  26 cm
C .  30 cm
D .  34 cm
Answer: Option D Let the length of each side of the square be x cm Then, length of rectangle = (x + 5) cm and its breadth = (x - 3) cm $$\eqalign{ & \therefore \left( {x + 5} \right)\left( {x - 3} \right) = {x^2} \cr & \Rightarrow {x^2} + 2x - 15 = {x^2} \cr & \Rightarrow x = \frac{{15}}{2} \cr} $$ ∴ Length : $$\eqalign{ & = \left( {\frac{{15}}{2} + 5} \right)cm \cr & = \frac{{25}}{2}cm \cr} $$ Breadth : $$\eqalign{ & = \left( {\frac{{15}}{2} - 3} \right)cm \cr & = \frac{9}{2}cm \cr} $$ Hence, perimeter : $$\eqalign{ & = 2\left( {l + b} \right) \cr & = 2\left( {\frac{{25}}{2} + \frac{9}{2}} \right)cm \cr & = 34\,cm \cr} $$
Submit Comment/FeedBack