The altitude of an equilateral triangle of side $$2\sqrt 3 $$ cm is :
Options:
A .  $$\frac{1}{2}$$ cm
B .  $$\frac{{\sqrt 3 }}{4}$$ cm
C .  $$\frac{{\sqrt 3 }}{2}$$ cm
D .  3 cm
Answer: Option D Let ABC be the equilateral triangle and AD be the altitude on base BC In an equilateral triangle, the altitude and the median coincide. So, BC = DC = $$\left( {\frac{{2\sqrt 3 }}{2}} \right)$$ cm = $$\sqrt 3 $$ cm Let the length of the altitude AD be x cm Then, in right angled ΔADB, AB2 = AD2 + BD2 ⇒ $${\left( {2\sqrt 3 } \right)^2}$$ = x2 + $${\left( {\sqrt 3 } \right)^2}$$ ⇒ x2 = (12 - 3) ⇒ x2 = 9 ⇒ x = 3 cm
Submit Comment/FeedBack