Question
Simplify the value of $$\frac{{{\text{0}}{\text{.9}} \times {\text{0}}{\text{.9}} \times {\text{0}}{\text{.9 + 0}}{\text{.2}} \times {\text{0}}{\text{.2}} \times {\text{0}}{\text{.2 + 0}}{\text{.3}} \times {\text{0}}{\text{.3}} \times {\text{0}}{\text{.3}} - {\text{3}} \times 0.9 \times {\text{0}}{\text{.2}} \times {\text{0}}{\text{.3}}}}{{{\text{0}}{\text{.9}} \times {\text{0}}{\text{.9 + 0}}{\text{.2}} \times {\text{0}}{\text{.2 + 0}}{\text{.3}} \times {\text{0}}{\text{.3}} - 0.9 \times {\text{0}}{\text{.2}} - {\text{0}}{\text{.2}} \times {\text{0}}{\text{.3}} - 0.3 \times 0.9}} = ?$$
Answer: Option A According to question,
$$\frac{{{\text{0}}{\text{.9}} \times {\text{0}}{\text{.9}} \times {\text{0}}{\text{.9 + 0}}{\text{.2}} \times {\text{0}}{\text{.2}} \times {\text{0}}{\text{.2 + 0}}{\text{.3}} \times {\text{0}}{\text{.3}} \times {\text{0}}{\text{.3}} - {\text{3}} \times 0.9 \times {\text{0}}{\text{.2}} \times {\text{0}}{\text{.3}}}}{{{\text{0}}{\text{.9}} \times {\text{0}}{\text{.9 + 0}}{\text{.2}} \times {\text{0}}{\text{.2 + 0}}{\text{.3}} \times {\text{0}}{\text{.3}} - 0.9 \times {\text{0}}{\text{.2}} - {\text{0}}{\text{.2}} \times {\text{0}}{\text{.3}} - 0.3 \times 0.9}}$$
As we know that
$${a^3} + {b^3} + {c^3} - 3abc = $$ $$\left( {a + b + c} \right)$$ $$\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$$
$$ = \frac{{{{(0.9)}^3} + {{(0.2)}^3} + {{(0.3)}^3} - 3 \times 0.9 \times 0.2 \times 0.3}}{{{{(0.9)}^2} + {{(0.2)}^2} + {{(0.3)}^2} - 0.9 \times 0.2 - 0.2 \times 0.3 - 0.3 \times 0.9}}$$
$$ = \frac{{\left( {0.9 + 0.2 + 0.3} \right)\left[ {{{(0.9)}^2} + {{(0.2)}^2} + {{(0.3)}^2} - 0.9 \times 0.2 - 0.2 \times 0.3 - 0.3 \times 0.9} \right]}}{{{{(0.9)}^2} + {{(0.2)}^2} + {{(0.3)}^2} - 0.9 \times 0.2 - 0.2 \times 0.3 - 0.3 \times 0.9}}$$
$$\eqalign{
& = 0.9 + 0.2 + 0.3 \cr
& = 1.4 \cr} $$
Was this answer helpful ?
Submit Comment/FeedBack