Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed?
Options:
A .  210
B .  1050
C .  25200
D .  21400
E .  None of these
Answer: Option C Number of ways of selecting (3 consonants out of 7) and (2 vowels out of 4) $$\eqalign{ & = \left( {{}^7{C_3} \times {}^4{C_2}} \right) \cr & = \left( {\frac{{7 \times 6 \times 5}}{{3 \times 2 \times 1}} \times \frac{{4 \times 3}}{{2 \times 1}}} \right) \cr & = 210 \cr} $$ Number of groups, each having 3 consonants and 2 vowels = 210 Each group contains 5 letters. Number of ways of arranging 5 letters among themselves = 5! = 5 x 4 x 3 x 2 x 1 = 120 ∴ Required number of ways = (210 x 120) = 25200
Submit Comment/FeedBack