Answer : Option A
Explanation :
Let the investment in scheme A be Rs.x
Then the investment in scheme = Rs.(15000-x)
$MF#%\text{Compound interest for Rs.x = }\text{P}\left(1 + \dfrac{\text{R}}{100}\right)^\text{T} - \text{P} = x\left(1 + \dfrac{5}{100}\right)^2 - x\\\\ \text{Compound interest for Rs. (15000-x) = }\text{P}\left(1 + \dfrac{\text{R}}{100}\right)^\text{T} - \text{P} = (15000-x)\left(1 + \dfrac{10}{100}\right)^2 - (15000-x)\\\\ \text{Total compound interest = }x\left(1 + \dfrac{5}{100}\right)^2 - x + (15000-x)\left(1 + \dfrac{10}{100}\right)^2 - (15000-x)\\\\ = x\left(1 + \dfrac{10}{100} + \dfrac{25}{10000}\right) - x + (15000-x)\left(1 + \dfrac{20}{100} + \dfrac{100}{10000}\right) - (15000-x)\\\\ = x\left(\dfrac{10}{100} + \dfrac{25}{10000}\right) + (15000-x)\left(\dfrac{20}{100} + \dfrac{100}{10000}\right) \\\\ = \dfrac{1025x}{10000} + (15000-x)\left(\dfrac{2100}{10000}\right) \\\\ = \dfrac{1025x}{10000} + 15000 \times \dfrac{2100}{10000} - \dfrac{2100x}{10000} \\\\ = \dfrac{-1075x}{10000} + 3150$MF#%
Given that total compound interest = Rs. 2075
$MF#%\dfrac{-1075x}{10000} + 3150 = 2075\\\\ => \dfrac{1075x}{10000} = 1075\\\\ => \dfrac{x}{10000} = 1\\\\ => x =10000$MF#%
i.e, Amount invested in Scheme A = Rs. 10000
Submit Comment/FeedBack