Answer: Option D We have :
$$\eqalign{
& AE \bot BC{\text{ and }} \cr
& AD = BD = CD = r \cr
& AE = AD + DE = r + DE \cr} $$
In Δ BDC,
$$\eqalign{
& BE = \sqrt {{{\left( {BD} \right)}^2} - {{\left( {DE} \right)}^2}} \cr
& \,\,\,\,\,\,\,\,\,\,\, = \sqrt {{r^2} - {{\left( {DE} \right)}^2}} \cr
& \,\,\,\,\,\,\,\,\,\,\, = \sqrt {\left( {r - DE} \right)\left( {r + DE} \right)} \cr} $$
∴ Area of the triangle :
$$\eqalign{
& = \frac{1}{2} \times BC \times AE \cr
& = \frac{1}{2} \times 2BE \times AE \cr
& = BE \times AE \cr
& = \sqrt {\left( {r - DE} \right)\left( {r + DE} \right)} \left( {r + DE} \right) \cr
& = {\left( {r - DE} \right)^{\frac{1}{2}}}{\left( {r + DE} \right)^{\frac{3}{2}}} \cr} $$
Was this answer helpful ?
0 Likes
Submit Comment/FeedBack