Menu
Popular Courses
Search
Question
In the given figure, ABC is an equilateral triangle which is inscribed inside a circle and whose radius is r. Which of the following is the area of the triangle ?
Options:
A .  $${\left( {r + DE} \right)^{\frac{1}{2}}}{\left( {r - DE} \right)^{\frac{3}{2}}}$$
B .  $${\left( {r - DE} \right)^{\frac{1}{2}}}{\left( {r + DE} \right)^2}$$
C .  $${\left( {r - DE} \right)^2}{\left( {r + DE} \right)^2}$$
D .  $${\left( {r - DE} \right)^{\frac{1}{2}}}{\left( {r + DE} \right)^{\frac{3}{2}}}$$
Answer: Option D
We have :
$$\eqalign{
& AE \bot BC{\text{ and }} \cr
& AD = BD = CD = r \cr
& AE = AD + DE = r + DE \cr} $$
In Δ BDC,
$$\eqalign{
& BE = \sqrt {{{\left( {BD} \right)}^2} - {{\left( {DE} \right)}^2}} \cr
& \,\,\,\,\,\,\,\,\,\,\, = \sqrt {{r^2} - {{\left( {DE} \right)}^2}} \cr
& \,\,\,\,\,\,\,\,\,\,\, = \sqrt {\left( {r - DE} \right)\left( {r + DE} \right)} \cr} $$
∴ Area of the triangle :
$$\eqalign{
& = \frac{1}{2} \times BC \times AE \cr
& = \frac{1}{2} \times 2BE \times AE \cr
& = BE \times AE \cr
& = \sqrt {\left( {r - DE} \right)\left( {r + DE} \right)} \left( {r + DE} \right) \cr
& = {\left( {r - DE} \right)^{\frac{1}{2}}}{\left( {r + DE} \right)^{\frac{3}{2}}} \cr} $$

Was this answer helpful ?
Next Question

Submit Comment/FeedBack

Your email address will not be published. Required fields are marked *

More Questions on This Topic :


Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024