If f(x) = min (7x + 3, 8x – 6) for 0 < x < 4, then determine the maximum value of f(x).
Options:
A .  66
B .  26
C .  31
D .  28
E .  54
Answer: Option B : B Soln:Equate the two terms to get the point of intersection7x+3=8x-6X=9, which is greater than the given constraintMinimum/Maximum of two increasing function will also be an increasing function.Here 7x + 3 and 8x – 6 are both increasing functions, so f(x) will also be an increasing function.Based on the constraints given, max of f(x) will occur at x = 4 i.e. f(4) = min (31, 26) = 26Hence option (b)
Submit Comment/FeedBack