Menu
Popular Courses
Search
Question
For a uniformly loaded rectangular area, the Newmark’s influence factor given by ___________
Options:
A .  \(K= \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
B .  \(K= \frac{1}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
C .  \(K= \frac{1}{4π}\)
D .  \(K= \frac{q}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
Answer: Option B
Answer: (b).\(K= \frac{1}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)

Was this answer helpful ?
Next Question

Submit Comment/FeedBack

Your email address will not be published. Required fields are marked *

Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024