Answer : Option C
Explanation :
Let the rate be R% per annum
$MF#%
\begin{align}&\text{P}\left(1 + \dfrac{\text{R}}{100}\right)^\text{T} = 1573.04\\\\ &1400\left(1 + \dfrac{\text{R}}{100}\right)^2 = 1573.04\\\\ &\left(1 + \dfrac{\text{R}}{100}\right)^2 = \dfrac{1573.04}{1400} = \dfrac{157304}{140000} = \dfrac{11236
}{10000}\\\\&\left(1 + \dfrac{\text{R}}{100}\right) = \sqrt{\dfrac{11236}{10000}} = \dfrac{\sqrt{11236}}{\sqrt{10000}} =\dfrac{106}{100} \\\\\ &\dfrac{\text{R}}{100} = \dfrac{106}{100} - 1 = \dfrac{6}{100}\\\\&\text{R} = 6\%\end{align}
$MF#%
Submit Comment/FeedBack