A spherical ball of lead, 3 cm in diameter is melted and recast into three spherical ball. The diameter of two of these are 1.5 cm and 2 cm respectively. The diameter of the third ball is :
Options:
A .  2.5 cm
B .  2.66 cm
C .  3 cm
D .  3.5 cm
Answer: Option A Let the radius of the third ball be R cm Then, $$\frac{4}{3}\pi \times {\left( {\frac{3}{4}} \right)^3} + \frac{4}{3}\pi \times {\left( 1 \right)^3}$$ $$ + \frac{4}{3}\pi \times {R^3}$$ $$ = \frac{4}{3}\pi \times {\left( {\frac{3}{2}} \right)^3}$$ $$\eqalign{ & \Rightarrow \frac{{27}}{{64}} + 1 + {R^3} = \frac{{27}}{8} \cr & \Rightarrow {R^3} = \frac{{125}}{{64}} = \frac{{{{\left( 5 \right)}^3}}}{{{{\left( 4 \right)}^3}}} \cr & \Rightarrow R = \frac{5}{4} \cr} $$ ∴ Diameter of the third ball : $$ = 2R = \frac{5}{2}cm = 2.5\,cm$$
Submit Comment/FeedBack