A solid metallic right circular cylinder of base diameter 16 m and height 2 cm is melted and recast into a right circular cone of height three times that of the cylinder. Find the curved surface area of the cone. [Use $$\pi $$ = 3.14]
Options:
A .  196.8 cm2
B .  228.4 cm2
C .  251.2 cm2
D .  None of these
Answer: Option C Let the radius of the cone be r cm Then, $$\eqalign{ & \pi \times {\left( 8 \right)^2} \times 2 = \frac{1}{3} \times \pi \times {r^2} \times 6 \cr & \Rightarrow r = 8 \cr} $$ Slant height, $$\eqalign{ & l = \sqrt {{r^2} + {h^2}} \cr & \,\,\, = \sqrt {{8^2} + {6^2}} \cr & \,\,\, = \sqrt {100} \cr & \,\,\, = 10\,cm \cr} $$ Curved surface area of cone : $$\eqalign{ & = \pi rl \cr & = \left( {3.14 \times 8 \times 10} \right){\text{ c}}{{\text{m}}^2} \cr & = 251.2{\text{ c}}{{\text{m}}^2} \cr} $$
Submit Comment/FeedBack