A right circular cone and a right circular cylinder have equal base and equal height. If the radius of the base and the height are in the ratio 5 : 12, then the ratio of the total surface area of the cylinder to that of the cone is :
Options:
A .  3 : 1
B .  13 : 9
C .  17 : 9
D .  34 : 9
Answer: Option C Let their radius and height be 5x and 12x respectively Slant height of the cone, $$l = \sqrt {{{\left( {5x} \right)}^2} + {{\left( {12x} \right)}^2}} = 13x$$ $$\eqalign{ & \frac{{{\text{Total surface area of cylinder}}}}{{{\text{Total surface area of cone}}}} \cr & = \frac{{2\pi r\left( {h + r} \right)}}{{\pi r\left( {l + r} \right)}} \cr & = \frac{{2\left( {h + r} \right)}}{{\left( {l + r} \right)}} \cr & = \frac{{2 \times \left( {12x + 5x} \right)}}{{\left( {13x + 5x} \right)}} \cr & = \frac{{34x}}{{18x}} \cr & = \frac{{17}}{9}\,Or\,17:9 \cr} $$
Submit Comment/FeedBack