Menu
Popular Courses
Search
Question
A pyramid has an equilateral triangle as its base of which each side is 1 m. Its slant edge is 3 m. The whole surface are of the pyramid is equal to :
Options:
A .  $$\frac{{\sqrt 3 + 2\sqrt {13} }}{4}sq.m$$
B .  $$\frac{{\sqrt 3 + 3\sqrt {13} }}{4}sq.m$$
C .  $$\frac{{\sqrt 3 + 3\sqrt {35} }}{4}sq.m$$
D .  $$\frac{{\sqrt 3 + 2\sqrt {35} }}{4}sq.m$$
Answer: Option C
Area of base :
$$\eqalign{
& = \left( {\frac{{\sqrt 3 }}{4} \times {1^2}} \right){m^2} \cr
& = \frac{{\sqrt 3 }}{4}{m^2} \cr} $$
Clearly, the pyramid has 3 triangular faces each with sides 3m, 3m and 1 m
So, area of each lateral face :
$$\eqalign{
& = \sqrt {\frac{7}{2} \times \left( {\frac{7}{2} - 3} \right)\left( {\frac{7}{2} - 3} \right)\left( {\frac{7}{2} - 1} \right)} {m^2} \cr
& \left[ {\because s = \frac{{3 + 3 + 1}}{2} = \frac{7}{2}} \right] \cr
& = \sqrt {\frac{7}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{5}{2}} {m^2} \cr
& = \frac{{\sqrt {35} }}{4}{m^2} \cr} $$
∴ Whole surface area of the pyramid :
$$\eqalign{
& = \left( {\frac{{\sqrt 3 }}{4} + 3 \times \frac{{\sqrt {35} }}{4}} \right){m^2} \cr
& = \frac{{\sqrt 3 + 3\sqrt {35} }}{4}{m^2} \cr} $$

Was this answer helpful ?
Next Question

Submit Comment/FeedBack

Your email address will not be published. Required fields are marked *

More Questions on This Topic :


Share this page with your friends!

Latest Videos

Chapter 1 - GLOBAL STEEL SCENARIO & INDI Part 1 : (13-04-2024) INDUSTRY AND COMPANY AWARENESS (ICA)
Direction Sense Test Part 1 Reasoning (Hindi)
Chapter 1 - RMHP / OHP / OB & BP Part 1 : (14-02-2024) GPOE
Cube & Cuboid Part 1 Reasoning (Hindi)
Data Interpretation (DI) Basic Concept Reasoning (Hindi)
Counting Figures Part 1 Counting Of Straight Lines Reasoning (Hindi)
Real Numbers Part 7 Class 10 Maths
Real Numbers Part 1 Class 10 Maths
Polynomials Part 1 Class 10 Maths

Latest Test Papers

Chapter 3.1 : Overview of Finance & Acco Chapter 3 : Finance & Accounts SAIL E0 - GFM 2024
Chapter 2.1 : Overview Chapter 2 : Materials Management SAIL E0 - GFM 2024
Chapter 1.1 : Personnel Functions- An ov Chapter 1 : Personnel Management SAIL E0 - GFM 2024
GPOE / GPA Combined 1 Free CBT Mock Test SAIL E0 2024
CBT Mixed Test 1 GPOE/GPA SAIL E0 2024