A larger cube is formed from the material obtained by melting three smaller cubes of 3, 4 and 5 cm side. The ratio of the total surface areas of the smaller cubes and the larger cube is :
Options:
A .  2 : 1
B .  3 : 2
C .  25 : 18
D .  27 : 20
Answer: Option C Volume of the larger cube : $$\eqalign{ & = \left( {{3^3} + {4^3} + {5^3}} \right){\text{ c}}{{\text{m}}^3} \cr & = 216{\text{ c}}{{\text{m}}^3} \cr} $$ Let the edge of the larger cube be a cm $$\eqalign{ & \therefore {a^3} = 216 \cr & \Rightarrow a = 6 \cr} $$ Required ratio : $$\eqalign{ & = \frac{{6\left( {{3^2} + {4^2} + {5^2}} \right)}}{{6 \times {6^2}}} \cr & = \frac{{6 \times 50}}{{6 \times 36}} \cr & = \frac{{25}}{{18}}\,Or\,25:18 \cr} $$
Submit Comment/FeedBack