Lakshya Education MCQs

Question: 3cos1xπxπ2=0 has :

Options:
 A. One solution B. Infinite solutions C. No solution D. None of these
: A

3cos1xπx+π2
Clearly graphs of y=3cos1x and y=πx+π2 in the domain of cos1x i.e., in [-1, 1] intersect only once, therefore there is only one solution of the given equation.

Earn Reward Points by submitting Detailed Explaination for this Question

More Questions on This Topic :

Question 1. 12cos1(1x1+x)=
1.    cot−1√x
2.    tan−1√x
3.    tan−1x
4.    cot−1x
: B

Let x=tan2θθ=tan1x
Now, 12cos1(1x1+x)
=12cos1(1tan2θ1+tan2θ)
=12cos1cos2θ=2θ2=θ=tan1x.
Question 2. 4tan115tan11239 is equal to
1.    π
2.    π2
3.    π3
4.    π4
: D

Since 2tan1x=tan12x1x2
4tan115=2[2tan115]=2tan1251125
=2tan11024=tan120241100576=tan1120119
So, 4tan115tan11239=tan1120119tan11239
=tan112011912391+120119.1239=tan1(120×239)119(119×239)+120
tan11=π4.
Question 3. If cos1x+cos1y+cos1z=3π, then xy+yz+zx=

: C

Given cos1x+cos1y+cos1z=3π
0cos1xπ
0cos1yπ and 0cos1zπ
Here cos1x=cos1y=cos1z=π
x=y=z=cosπ=1
xy+yz+zx=(1)(1)+(1)(1)+(1)(1)
=1+1+1=3.
Question 4. The value of cos1(cos12)sin1(sin14) is
1.    −2
2.    8π−26
3.    4π+2
4.    None of these
: D

cos1(cos12)sin1(sin14)4π12+5π14=9π26
Question 5. The value of sin[2tan1(13)]+cos[tan1(22)]=
1.    1615
2.    1415
3.    1215
4.    1115
: B

sin[2tan1(13)]+cos[tan1(22)]
=sin[tan123119]+cos[tan1(22)]
=sin[tan134]+cos[tan122]
=tan122=cos113
Alsotan134=sin135
=35+13=1415.
Question 6. If 3sin12x1+x24cos11x21+x2+2tan12x1+x2=π3 then x=
1.    √3
2.    1√3
3.    1
4.    None of these