# Arithmetic Progression

**Vedic Maths trick to find Arithmetic Progression.**

### Scenario One -

##### Find the sum of Arithmetic Progression : **4, 8, 12, 16, 20**

##### S_{n} = Sum of n^{th} term.

n = Number of terms.

Formula :

S_{n} = n ( n + 1 ) / 2

If n^{th}term is multiple of any number then formula will be different

##### M = Multiple of number divisible by n^{th} terms.

Formula :

S_{n} = M ( n ( n + 1 ) / 2 )

From above formula we will solve the given value.

#####
S_{n} = 4 ( 5 ( 5 + 1 ) / 2 )

S_{n} = 60

### Scenario Two -

##### Find the sum of Arithmetic Progression : **5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20**

First we will find the Q^{th} and P^{th} value from the given terms.

**1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20**

Now from above terms we will find Q^{th} and P^{th} value.